![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
Ref | Expression |
---|---|
csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | csbeq1 3642 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ⦋csb 3639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-sbc 3542 df-csb 3640 |
This theorem is referenced by: csbco3g 4108 csbidm 4110 fmptcof 6512 mpt2mptsx 7353 dmmpt2ssx 7355 fmpt2x 7356 ovmptss 7378 fmpt2co 7380 xpf1o 8238 hsmexlem2 9362 iundom2g 9475 sumeq2ii 14543 summolem3 14565 summolem2a 14566 summo 14568 zsum 14569 fsum 14571 sumsnf 14593 sumsn 14595 fsumcnv 14624 fsumcom2 14625 fsumcom2OLD 14626 fsumshftm 14633 fsum0diag2 14635 prodeq2ii 14763 prodmolem3 14783 prodmolem2a 14784 prodmo 14786 zprod 14787 fprod 14791 prodsn 14812 prodsnf 14814 fprodcnv 14833 fprodcom2 14834 fprodcom2OLD 14835 bpolylem 14899 bpolyval 14900 ruclem1 15080 pcmpt 15719 gsumvalx 17392 odfval 18073 odval 18074 telgsumfzslem 18506 telgsumfzs 18507 psrval 19485 psrass1lem 19500 mpfrcl 19641 evlsval 19642 evls1fval 19807 fsum2cn 22796 iunmbl2 23446 dvfsumlem1 23909 itgsubst 23932 q1pval 24033 r1pval 24036 rlimcnp2 24813 fsumdvdscom 25031 fsumdvdsmul 25041 ttgval 25875 fsumiunle 29805 msrfval 31662 poimirlem1 33642 poimirlem3 33644 poimirlem4 33645 poimirlem5 33646 poimirlem6 33647 poimirlem7 33648 poimirlem8 33649 poimirlem10 33651 poimirlem11 33652 poimirlem12 33653 poimirlem15 33656 poimirlem16 33657 poimirlem17 33658 poimirlem18 33659 poimirlem19 33660 poimirlem20 33661 poimirlem21 33662 poimirlem22 33663 poimirlem23 33664 poimirlem24 33665 poimirlem25 33666 poimirlem26 33667 poimirlem27 33668 poimirlem28 33669 cdleme31snd 36093 cdlemeg46c 36220 cdlemkid2 36631 cdlemk46 36655 cdlemk53b 36663 cdlemk53 36664 monotuz 37925 oddcomabszz 37928 fnwe2val 38038 fnwe2lem1 38039 fnwe2lem2 38040 mendval 38172 sumsnd 39601 climinf2mpt 40366 climinfmpt 40367 sge0f1o 41019 rnghmval 42318 dmmpt2ssx2 42542 |
Copyright terms: Public domain | W3C validator |