![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbaovg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
csbaovg | ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3685 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) ) | |
2 | csbeq1 3685 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3685 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | csbeq1 3685 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
5 | 2, 3, 4 | aoveq123d 41778 | . . 3 ⊢ (𝑦 = 𝐴 → ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
6 | 1, 5 | eqeq12d 2786 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) ↔ ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) )) |
7 | vex 3354 | . . 3 ⊢ 𝑦 ∈ V | |
8 | nfcsb1v 3698 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | nfcsb1v 3698 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
10 | nfcsb1v 3698 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
11 | 8, 9, 10 | nfaov 41779 | . . 3 ⊢ Ⅎ𝑥 ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
12 | csbeq1a 3691 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
13 | csbeq1a 3691 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
14 | csbeq1a 3691 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
15 | 12, 13, 14 | aoveq123d 41778 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) ) |
16 | 7, 11, 15 | csbief 3707 | . 2 ⊢ ⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
17 | 6, 16 | vtoclg 3417 | 1 ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ⦋csb 3682 ((caov 41715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-res 5261 df-iota 5994 df-fun 6033 df-fv 6039 df-dfat 41716 df-afv 41717 df-aov 41718 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |