![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbafv12g | Structured version Visualization version GIF version |
Description: Move class substitution in and out of a function value, analogous to csbfv12 6388, with a direct proof proposed by Mario Carneiro, analogous to csbov123 6846. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
csbafv12g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3673 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = ⦋𝐴 / 𝑥⦌(𝐹'''𝐵)) | |
2 | csbeq1 3673 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3673 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 2, 3 | afveq12d 41715 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
5 | 1, 4 | eqeq12d 2771 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵))) |
6 | vex 3339 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3686 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
8 | nfcsb1v 3686 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | 7, 8 | nfafv 41718 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) |
10 | csbeq1a 3679 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
11 | csbeq1a 3679 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
12 | 10, 11 | afveq12d 41715 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵)) |
13 | 6, 9, 12 | csbief 3695 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) |
14 | 5, 13 | vtoclg 3402 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1628 ∈ wcel 2135 ⦋csb 3670 '''cafv 41696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-res 5274 df-iota 6008 df-fun 6047 df-fv 6053 df-dfat 41698 df-afv 41699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |