![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csb0 | Structured version Visualization version GIF version |
Description: The proper substitution of a class into the empty set is empty. (Contributed by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
csb0 | ⊢ ⦋𝐴 / 𝑥⦌∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbconstg 3687 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌∅ = ∅) | |
2 | csbprc 4123 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌∅ = ∅) | |
3 | 1, 2 | pm2.61i 176 | 1 ⊢ ⦋𝐴 / 𝑥⦌∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⦋csb 3674 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-nul 4059 |
This theorem is referenced by: disjdsct 29810 onfrALTlem5 39277 onfrALTlem4 39278 onfrALTlem5VD 39638 |
Copyright terms: Public domain | W3C validator |