MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crth Structured version   Visualization version   GIF version

Theorem crth 15530
Description: The Chinese Remainder Theorem: the function that maps 𝑥 to its remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when 𝑀 and 𝑁 are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crth.1 𝑆 = (0..^(𝑀 · 𝑁))
crth.2 𝑇 = ((0..^𝑀) × (0..^𝑁))
crth.3 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
crth.4 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
Assertion
Ref Expression
crth (𝜑𝐹:𝑆1-1-onto𝑇)
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑇   𝑥,𝑁
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem crth
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 12509 . . . . . 6 (𝑥 ∈ (0..^(𝑀 · 𝑁)) → 𝑥 ∈ ℤ)
2 crth.1 . . . . . 6 𝑆 = (0..^(𝑀 · 𝑁))
31, 2eleq2s 2748 . . . . 5 (𝑥𝑆𝑥 ∈ ℤ)
4 simpr 476 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5 crth.4 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
65simp1d 1093 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
76adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑀 ∈ ℕ)
8 zmodfzo 12733 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑥 mod 𝑀) ∈ (0..^𝑀))
94, 7, 8syl2anc 694 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → (𝑥 mod 𝑀) ∈ (0..^𝑀))
105simp2d 1094 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
12 zmodfzo 12733 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑥 mod 𝑁) ∈ (0..^𝑁))
134, 11, 12syl2anc 694 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → (𝑥 mod 𝑁) ∈ (0..^𝑁))
14 opelxpi 5182 . . . . . . 7 (((𝑥 mod 𝑀) ∈ (0..^𝑀) ∧ (𝑥 mod 𝑁) ∈ (0..^𝑁)) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ ((0..^𝑀) × (0..^𝑁)))
159, 13, 14syl2anc 694 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ ((0..^𝑀) × (0..^𝑁)))
16 crth.2 . . . . . 6 𝑇 = ((0..^𝑀) × (0..^𝑁))
1715, 16syl6eleqr 2741 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ 𝑇)
183, 17sylan2 490 . . . 4 ((𝜑𝑥𝑆) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ 𝑇)
19 crth.3 . . . 4 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
2018, 19fmptd 6425 . . 3 (𝜑𝐹:𝑆𝑇)
21 oveq1 6697 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 mod 𝑀) = (𝑦 mod 𝑀))
22 oveq1 6697 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁))
2321, 22opeq12d 4441 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
24 opex 4962 . . . . . . . . 9 ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ ∈ V
2523, 19, 24fvmpt 6321 . . . . . . . 8 (𝑦𝑆 → (𝐹𝑦) = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
2625ad2antrl 764 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝐹𝑦) = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
27 oveq1 6697 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 mod 𝑀) = (𝑧 mod 𝑀))
28 oveq1 6697 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 mod 𝑁) = (𝑧 mod 𝑁))
2927, 28opeq12d 4441 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
30 opex 4962 . . . . . . . . 9 ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ∈ V
3129, 19, 30fvmpt 6321 . . . . . . . 8 (𝑧𝑆 → (𝐹𝑧) = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
3231ad2antll 765 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝐹𝑧) = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
3326, 32eqeq12d 2666 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩))
34 ovex 6718 . . . . . . 7 (𝑦 mod 𝑀) ∈ V
35 ovex 6718 . . . . . . 7 (𝑦 mod 𝑁) ∈ V
3634, 35opth 4974 . . . . . 6 (⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)))
3733, 36syl6bb 276 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁))))
386adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℕ)
3938nnzd 11519 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℤ)
4010adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℕ)
4140nnzd 11519 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℤ)
42 simprl 809 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦𝑆)
4342, 2syl6eleq 2740 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ (0..^(𝑀 · 𝑁)))
44 elfzoelz 12509 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 ∈ ℤ)
4543, 44syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℤ)
46 simprr 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧𝑆)
4746, 2syl6eleq 2740 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ (0..^(𝑀 · 𝑁)))
48 elfzoelz 12509 . . . . . . . . 9 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 ∈ ℤ)
4947, 48syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℤ)
5045, 49zsubcld 11525 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦𝑧) ∈ ℤ)
515simp3d 1095 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
5251adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 gcd 𝑁) = 1)
53 coprmdvds2 15415 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑦𝑧) ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧)) → (𝑀 · 𝑁) ∥ (𝑦𝑧)))
5439, 41, 50, 52, 53syl31anc 1369 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧)) → (𝑀 · 𝑁) ∥ (𝑦𝑧)))
55 moddvds 15038 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦𝑧)))
5638, 45, 49, 55syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦𝑧)))
57 moddvds 15038 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦𝑧)))
5840, 45, 49, 57syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦𝑧)))
5956, 58anbi12d 747 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) ↔ (𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧))))
6045zred 11520 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℝ)
6138, 40nnmulcld 11106 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 · 𝑁) ∈ ℕ)
6261nnrpd 11908 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 · 𝑁) ∈ ℝ+)
63 elfzole1 12517 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑦)
6443, 63syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 ≤ 𝑦)
65 elfzolt2 12518 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 < (𝑀 · 𝑁))
6643, 65syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 < (𝑀 · 𝑁))
67 modid 12735 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < (𝑀 · 𝑁))) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦)
6860, 62, 64, 66, 67syl22anc 1367 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦)
6949zred 11520 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℝ)
70 elfzole1 12517 . . . . . . . . . 10 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑧)
7147, 70syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 ≤ 𝑧)
72 elfzolt2 12518 . . . . . . . . . 10 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 < (𝑀 · 𝑁))
7347, 72syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 < (𝑀 · 𝑁))
74 modid 12735 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑧𝑧 < (𝑀 · 𝑁))) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧)
7569, 62, 71, 73, 74syl22anc 1367 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧)
7668, 75eqeq12d 2666 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ 𝑦 = 𝑧))
77 moddvds 15038 . . . . . . . 8 (((𝑀 · 𝑁) ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
7861, 45, 49, 77syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
7976, 78bitr3d 270 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 = 𝑧 ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
8054, 59, 793imtr4d 283 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) → 𝑦 = 𝑧))
8137, 80sylbid 230 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
8281ralrimivva 3000 . . 3 (𝜑 → ∀𝑦𝑆𝑧𝑆 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
83 dff13 6552 . . 3 (𝐹:𝑆1-1𝑇 ↔ (𝐹:𝑆𝑇 ∧ ∀𝑦𝑆𝑧𝑆 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
8420, 82, 83sylanbrc 699 . 2 (𝜑𝐹:𝑆1-1𝑇)
85 nnnn0 11337 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
86 nnnn0 11337 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
87 nn0mulcl 11367 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
88 hashfzo0 13255 . . . . . . . . 9 ((𝑀 · 𝑁) ∈ ℕ0 → (#‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁))
8987, 88syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (#‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁))
90 fzofi 12813 . . . . . . . . . 10 (0..^𝑀) ∈ Fin
91 fzofi 12813 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
92 hashxp 13259 . . . . . . . . . 10 (((0..^𝑀) ∈ Fin ∧ (0..^𝑁) ∈ Fin) → (#‘((0..^𝑀) × (0..^𝑁))) = ((#‘(0..^𝑀)) · (#‘(0..^𝑁))))
9390, 91, 92mp2an 708 . . . . . . . . 9 (#‘((0..^𝑀) × (0..^𝑁))) = ((#‘(0..^𝑀)) · (#‘(0..^𝑁)))
94 hashfzo0 13255 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (#‘(0..^𝑀)) = 𝑀)
95 hashfzo0 13255 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (#‘(0..^𝑁)) = 𝑁)
9694, 95oveqan12d 6709 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((#‘(0..^𝑀)) · (#‘(0..^𝑁))) = (𝑀 · 𝑁))
9793, 96syl5eq 2697 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (#‘((0..^𝑀) × (0..^𝑁))) = (𝑀 · 𝑁))
9889, 97eqtr4d 2688 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (#‘(0..^(𝑀 · 𝑁))) = (#‘((0..^𝑀) × (0..^𝑁))))
99 fzofi 12813 . . . . . . . 8 (0..^(𝑀 · 𝑁)) ∈ Fin
100 xpfi 8272 . . . . . . . . 9 (((0..^𝑀) ∈ Fin ∧ (0..^𝑁) ∈ Fin) → ((0..^𝑀) × (0..^𝑁)) ∈ Fin)
10190, 91, 100mp2an 708 . . . . . . . 8 ((0..^𝑀) × (0..^𝑁)) ∈ Fin
102 hashen 13175 . . . . . . . 8 (((0..^(𝑀 · 𝑁)) ∈ Fin ∧ ((0..^𝑀) × (0..^𝑁)) ∈ Fin) → ((#‘(0..^(𝑀 · 𝑁))) = (#‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))))
10399, 101, 102mp2an 708 . . . . . . 7 ((#‘(0..^(𝑀 · 𝑁))) = (#‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
10498, 103sylib 208 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
10585, 86, 104syl2an 493 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
1066, 10, 105syl2anc 694 . . . 4 (𝜑 → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
107106, 2, 163brtr4g 4719 . . 3 (𝜑𝑆𝑇)
10816, 101eqeltri 2726 . . 3 𝑇 ∈ Fin
109 f1finf1o 8228 . . 3 ((𝑆𝑇𝑇 ∈ Fin) → (𝐹:𝑆1-1𝑇𝐹:𝑆1-1-onto𝑇))
110107, 108, 109sylancl 695 . 2 (𝜑 → (𝐹:𝑆1-1𝑇𝐹:𝑆1-1-onto𝑇))
11184, 110mpbid 222 1 (𝜑𝐹:𝑆1-1-onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  cop 4216   class class class wbr 4685  cmpt 4762   × cxp 5141  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cen 7994  Fincfn 7997  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  cmin 10304  cn 11058  0cn0 11330  cz 11415  +crp 11870  ..^cfzo 12504   mod cmo 12708  #chash 13157  cdvds 15027   gcd cgcd 15263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264
This theorem is referenced by:  phimullem  15531
  Copyright terms: Public domain W3C validator