![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crngmgp | Structured version Visualization version GIF version |
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
crngmgp | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | 1 | iscrng 18774 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
3 | 2 | simprbi 483 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 CMndccmn 18413 mulGrpcmgp 18709 Ringcrg 18767 CRingccrg 18768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-cring 18770 |
This theorem is referenced by: crngcom 18782 gsummgp0 18828 prdscrngd 18833 crngbinom 18841 unitabl 18888 subrgcrng 19006 sraassa 19547 mplbas2 19692 evlslem6 19735 evlslem3 19736 evlslem1 19737 evls1gsummul 19912 evl1gsummul 19946 mamuvs2 20434 matgsumcl 20488 madetsmelbas 20492 madetsmelbas2 20493 mdetleib2 20616 mdetf 20623 mdetdiaglem 20626 mdetdiag 20627 mdetdiagid 20628 mdetrlin 20630 mdetrsca 20631 mdetralt 20636 mdetuni0 20649 smadiadetlem4 20697 chpscmat 20869 chp0mat 20873 chpidmat 20874 amgmlem 24936 amgm 24937 wilthlem2 25015 wilthlem3 25016 lgseisenlem3 25322 lgseisenlem4 25323 mdetpmtr1 30219 mgpsumunsn 42668 mgpsumz 42669 mgpsumn 42670 amgmwlem 43079 amgmlemALT 43080 |
Copyright terms: Public domain | W3C validator |