![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crngbinom | Structured version Visualization version GIF version |
Description: The binomial theorem for commutative rings (special case of csrgbinom 18753): (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
crngbinom.s | ⊢ 𝑆 = (Base‘𝑅) |
crngbinom.m | ⊢ × = (.r‘𝑅) |
crngbinom.t | ⊢ · = (.g‘𝑅) |
crngbinom.a | ⊢ + = (+g‘𝑅) |
crngbinom.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
crngbinom.e | ⊢ ↑ = (.g‘𝐺) |
Ref | Expression |
---|---|
crngbinom | ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 18765 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | ringsrg 18796 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
4 | 3 | adantr 466 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑅 ∈ SRing) |
5 | crngbinom.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
6 | 5 | crngmgp 18762 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
7 | 6 | adantr 466 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝐺 ∈ CMnd) |
8 | simpr 471 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
9 | 4, 7, 8 | 3jca 1121 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0)) |
10 | crngbinom.s | . . 3 ⊢ 𝑆 = (Base‘𝑅) | |
11 | crngbinom.m | . . 3 ⊢ × = (.r‘𝑅) | |
12 | crngbinom.t | . . 3 ⊢ · = (.g‘𝑅) | |
13 | crngbinom.a | . . 3 ⊢ + = (+g‘𝑅) | |
14 | crngbinom.e | . . 3 ⊢ ↑ = (.g‘𝐺) | |
15 | 10, 11, 12, 13, 5, 14 | csrgbinom 18753 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
16 | 9, 15 | sylan 561 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 0cc0 10137 − cmin 10467 ℕ0cn0 11493 ...cfz 12532 Ccbc 13292 Basecbs 16063 +gcplusg 16148 .rcmulr 16149 Σg cgsu 16308 .gcmg 17747 CMndccmn 18399 mulGrpcmgp 18696 SRingcsrg 18712 Ringcrg 18754 CRingccrg 18755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-fz 12533 df-fzo 12673 df-seq 13008 df-fac 13264 df-bc 13293 df-hash 13321 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-0g 16309 df-gsum 16310 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-srg 18713 df-ring 18756 df-cring 18757 |
This theorem is referenced by: lply1binom 19890 |
Copyright terms: Public domain | W3C validator |