MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crne0 Structured version   Visualization version   GIF version

Theorem crne0 11226
Description: The real representation of complex numbers is nonzero iff one of its terms is nonzero. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
crne0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0))

Proof of Theorem crne0
StepHypRef Expression
1 ax-icn 10208 . . . . . . . 8 i ∈ ℂ
21mul01i 10439 . . . . . . 7 (i · 0) = 0
32oveq2i 6826 . . . . . 6 (0 + (i · 0)) = (0 + 0)
4 00id 10424 . . . . . 6 (0 + 0) = 0
53, 4eqtri 2783 . . . . 5 (0 + (i · 0)) = 0
65eqeq2i 2773 . . . 4 ((𝐴 + (i · 𝐵)) = (0 + (i · 0)) ↔ (𝐴 + (i · 𝐵)) = 0)
7 0re 10253 . . . . 5 0 ∈ ℝ
8 cru 11225 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (0 + (i · 0)) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
97, 7, 8mpanr12 723 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) = (0 + (i · 0)) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
106, 9syl5bbr 274 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
1110necon3abid 2969 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
12 neorian 3027 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1311, 12syl6rbbr 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2140  wne 2933  (class class class)co 6815  cr 10148  0cc0 10149  ici 10151   + caddc 10152   · cmul 10154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-po 5188  df-so 5189  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898
This theorem is referenced by:  crreczi  13204
  Copyright terms: Public domain W3C validator