MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem3 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem3 26760
Description: Lemma for crctcshwlkn0 26769. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshwlkn0lem3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑄(𝑥)

Proof of Theorem crctcshwlkn0lem3
StepHypRef Expression
1 crctcshwlkn0lem.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
21a1i 11 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))))
3 breq1 4688 . . . . 5 (𝑥 = 𝐽 → (𝑥 ≤ (𝑁𝑆) ↔ 𝐽 ≤ (𝑁𝑆)))
4 oveq1 6697 . . . . . 6 (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆))
54fveq2d 6233 . . . . 5 (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆)))
64oveq1d 6705 . . . . . 6 (𝑥 = 𝐽 → ((𝑥 + 𝑆) − 𝑁) = ((𝐽 + 𝑆) − 𝑁))
76fveq2d 6233 . . . . 5 (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
83, 5, 7ifbieq12d 4146 . . . 4 (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
98adantl 481 . . 3 (((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) ∧ 𝑥 = 𝐽) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
10 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
11 0zd 11427 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ∈ ℤ)
12 elfzoel2 12508 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
13 elfzoelz 12509 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
1412, 13zsubcld 11525 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℤ)
1514peano2zd 11523 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℤ)
16 elfzo1 12557 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
17 nnre 11065 . . . . . . . . . 10 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
18 nnre 11065 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
19 posdif 10559 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
20 0red 10079 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 0 ∈ ℝ)
21 resubcl 10383 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
2221ancoms 468 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
23 ltle 10164 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2420, 22, 23syl2anc 694 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2522lep1d 10993 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ≤ ((𝑁𝑆) + 1))
26 1red 10093 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℝ)
2722, 26readdcld 10107 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) + 1) ∈ ℝ)
28 letr 10169 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2920, 22, 27, 28syl3anc 1366 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
3025, 29mpan2d 710 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
3124, 30syld 47 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
3219, 31sylbid 230 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
3317, 18, 32syl2an 493 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
34333impia 1280 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ ((𝑁𝑆) + 1))
3516, 34sylbi 207 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ≤ ((𝑁𝑆) + 1))
36 eluz2 11731 . . . . . . 7 (((𝑁𝑆) + 1) ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ ((𝑁𝑆) + 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝑆) + 1)))
3711, 15, 35, 36syl3anbrc 1265 . . . . . 6 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
3810, 37syl 17 . . . . 5 (𝜑 → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
39 fzss1 12418 . . . . 5 (((𝑁𝑆) + 1) ∈ (ℤ‘0) → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
4038, 39syl 17 . . . 4 (𝜑 → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
4140sselda 3636 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → 𝐽 ∈ (0...𝑁))
42 fvex 6239 . . . . 5 (𝑃‘(𝐽 + 𝑆)) ∈ V
43 fvex 6239 . . . . 5 (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V
4442, 43ifex 4189 . . . 4 if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V
4544a1i 11 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V)
462, 9, 41, 45fvmptd 6327 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
47 elfz2 12371 . . . . . 6 (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) ↔ ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)))
48 zre 11419 . . . . . . . . . . . . . . . 16 (𝑆 ∈ ℤ → 𝑆 ∈ ℝ)
49 zre 11419 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
50 zre 11419 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5149, 50anim12i 589 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ))
52 simprr 811 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑁 ∈ ℝ)
53 simpl 472 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑆 ∈ ℝ)
5452, 53resubcld 10496 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) ∈ ℝ)
5554ltp1d 10992 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) < ((𝑁𝑆) + 1))
56 1red 10093 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 1 ∈ ℝ)
5754, 56readdcld 10107 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) + 1) ∈ ℝ)
58 simpl 472 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐽 ∈ ℝ)
5958adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝐽 ∈ ℝ)
60 ltletr 10167 . . . . . . . . . . . . . . . . . . 19 (((𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
6154, 57, 59, 60syl3anc 1366 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
6255, 61mpand 711 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → (𝑁𝑆) < 𝐽))
6354, 59ltnled 10222 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) < 𝐽 ↔ ¬ 𝐽 ≤ (𝑁𝑆)))
6462, 63sylibd 229 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6548, 51, 64syl2an 493 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6665expcom 450 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6766ancoms 468 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
68673adant1 1099 . . . . . . . . . . . 12 ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6968com12 32 . . . . . . . . . . 11 (𝑆 ∈ ℤ → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
7013, 69syl 17 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
7170com13 88 . . . . . . . . 9 (((𝑁𝑆) + 1) ≤ 𝐽 → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
7271adantr 480 . . . . . . . 8 ((((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
7372impcom 445 . . . . . . 7 (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
7473com12 32 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆)))
7547, 74syl5bi 232 . . . . 5 (𝑆 ∈ (1..^𝑁) → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
7610, 75syl 17 . . . 4 (𝜑 → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
7776imp 444 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆))
7877iffalsed 4130 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
7946, 78eqtrd 2685 1 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  cz 11415  cuz 11725  ...cfz 12364  ..^cfzo 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505
This theorem is referenced by:  crctcshwlkn0lem5  26762  crctcshwlkn0lem6  26763
  Copyright terms: Public domain W3C validator