MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshtrl Structured version   Visualization version   GIF version

Theorem crctcshtrl 26897
Description: Cyclically shifting the indices of a circuit 𝐹, 𝑃 results in a trail 𝐻, 𝑄. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshtrl (𝜑𝐻(Trails‘𝐺)𝑄)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem crctcshtrl
StepHypRef Expression
1 crctcsh.v . . 3 𝑉 = (Vtx‘𝐺)
2 crctcsh.i . . 3 𝐼 = (iEdg‘𝐺)
3 crctcsh.d . . 3 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctcsh.n . . 3 𝑁 = (♯‘𝐹)
5 crctcsh.s . . 3 (𝜑𝑆 ∈ (0..^𝑁))
6 crctcsh.h . . 3 𝐻 = (𝐹 cyclShift 𝑆)
7 crctcsh.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshwlk 26896 . 2 (𝜑𝐻(Walks‘𝐺)𝑄)
9 crctistrl 26872 . . . . 5 (𝐹(Circuits‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
102trlf1 26776 . . . . . 6 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
11 df-f1 6042 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
12 iswrdi 13466 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹 ∈ Word dom 𝐼)
1312anim1i 593 . . . . . . 7 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹) → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹))
1411, 13sylbi 207 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹))
1510, 14syl 17 . . . . 5 (𝐹(Trails‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹))
163, 9, 153syl 18 . . . 4 (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹))
17 elfzoelz 12635 . . . . 5 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
185, 17syl 17 . . . 4 (𝜑𝑆 ∈ ℤ)
19 df-3an 1074 . . . 4 ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹𝑆 ∈ ℤ) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹) ∧ 𝑆 ∈ ℤ))
2016, 18, 19sylanbrc 701 . . 3 (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹𝑆 ∈ ℤ))
21 cshinj 13728 . . 3 ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐻 = (𝐹 cyclShift 𝑆) → Fun 𝐻))
2220, 6, 21mpisyl 21 . 2 (𝜑 → Fun 𝐻)
23 istrl 26774 . 2 (𝐻(Trails‘𝐺)𝑄 ↔ (𝐻(Walks‘𝐺)𝑄 ∧ Fun 𝐻))
248, 22, 23sylanbrc 701 1 (𝜑𝐻(Trails‘𝐺)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  ifcif 4218   class class class wbr 4792  cmpt 4869  ccnv 5253  dom cdm 5254  Fun wfun 6031  wf 6033  1-1wf1 6034  cfv 6037  (class class class)co 6801  0cc0 10099   + caddc 10102  cle 10238  cmin 10429  cz 11540  ...cfz 12490  ..^cfzo 12630  chash 13282  Word cword 13448   cyclShift ccsh 13705  Vtxcvtx 26044  iEdgciedg 26045  Walkscwlks 26673  Trailsctrls 26768  Circuitsccrcts 26861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-hash 13283  df-word 13456  df-concat 13458  df-substr 13460  df-csh 13706  df-wlks 26676  df-trls 26770  df-crcts 26863
This theorem is referenced by:  crctcsh  26898  eucrctshift  27366
  Copyright terms: Public domain W3C validator