MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshlem4 Structured version   Visualization version   GIF version

Theorem crctcshlem4 26919
Description: Lemma for crctcsh 26923. (Contributed by AV, 10-Mar-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshlem4 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem crctcshlem4
StepHypRef Expression
1 crctcsh.h . . 3 𝐻 = (𝐹 cyclShift 𝑆)
2 oveq2 6817 . . . 4 (𝑆 = 0 → (𝐹 cyclShift 𝑆) = (𝐹 cyclShift 0))
3 crctcsh.d . . . . . 6 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctiswlk 26898 . . . . . 6 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
5 crctcsh.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
65wlkf 26716 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
73, 4, 63syl 18 . . . . 5 (𝜑𝐹 ∈ Word dom 𝐼)
8 cshw0 13736 . . . . 5 (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift 0) = 𝐹)
97, 8syl 17 . . . 4 (𝜑 → (𝐹 cyclShift 0) = 𝐹)
102, 9sylan9eqr 2812 . . 3 ((𝜑𝑆 = 0) → (𝐹 cyclShift 𝑆) = 𝐹)
111, 10syl5eq 2802 . 2 ((𝜑𝑆 = 0) → 𝐻 = 𝐹)
12 crctcsh.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
13 oveq2 6817 . . . . . . . . 9 (𝑆 = 0 → (𝑁𝑆) = (𝑁 − 0))
14 crctcsh.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
15 crctcsh.n . . . . . . . . . . . 12 𝑁 = (♯‘𝐹)
1614, 5, 3, 15crctcshlem1 26916 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
1716nn0cnd 11541 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1817subid1d 10569 . . . . . . . . 9 (𝜑 → (𝑁 − 0) = 𝑁)
1913, 18sylan9eqr 2812 . . . . . . . 8 ((𝜑𝑆 = 0) → (𝑁𝑆) = 𝑁)
2019breq2d 4812 . . . . . . 7 ((𝜑𝑆 = 0) → (𝑥 ≤ (𝑁𝑆) ↔ 𝑥𝑁))
2120adantr 472 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 ≤ (𝑁𝑆) ↔ 𝑥𝑁))
22 oveq2 6817 . . . . . . . . 9 (𝑆 = 0 → (𝑥 + 𝑆) = (𝑥 + 0))
2322adantl 473 . . . . . . . 8 ((𝜑𝑆 = 0) → (𝑥 + 𝑆) = (𝑥 + 0))
24 elfzelz 12531 . . . . . . . . . 10 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℤ)
2524zcnd 11671 . . . . . . . . 9 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℂ)
2625addid1d 10424 . . . . . . . 8 (𝑥 ∈ (0...𝑁) → (𝑥 + 0) = 𝑥)
2723, 26sylan9eq 2810 . . . . . . 7 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 + 𝑆) = 𝑥)
2827fveq2d 6352 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘(𝑥 + 𝑆)) = (𝑃𝑥))
2927oveq1d 6824 . . . . . . 7 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → ((𝑥 + 𝑆) − 𝑁) = (𝑥𝑁))
3029fveq2d 6352 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(𝑥𝑁)))
3121, 28, 30ifbieq12d 4253 . . . . 5 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁))))
3231mpteq2dva 4892 . . . 4 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))))
33 elfzle2 12534 . . . . . . . . 9 (𝑥 ∈ (0...𝑁) → 𝑥𝑁)
3433adantl 473 . . . . . . . 8 ((𝜑𝑥 ∈ (0...𝑁)) → 𝑥𝑁)
3534iftrued 4234 . . . . . . 7 ((𝜑𝑥 ∈ (0...𝑁)) → if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁))) = (𝑃𝑥))
3635mpteq2dva 4892 . . . . . 6 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
3714wlkp 26718 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
383, 4, 373syl 18 . . . . . . 7 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
39 ffn 6202 . . . . . . . . . . 11 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...(♯‘𝐹)))
4015eqcomi 2765 . . . . . . . . . . . . 13 (♯‘𝐹) = 𝑁
4140oveq2i 6820 . . . . . . . . . . . 12 (0...(♯‘𝐹)) = (0...𝑁)
4241fneq2i 6143 . . . . . . . . . . 11 (𝑃 Fn (0...(♯‘𝐹)) ↔ 𝑃 Fn (0...𝑁))
4339, 42sylib 208 . . . . . . . . . 10 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...𝑁))
4443adantl 473 . . . . . . . . 9 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃 Fn (0...𝑁))
45 dffn5 6399 . . . . . . . . 9 (𝑃 Fn (0...𝑁) ↔ 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
4644, 45sylib 208 . . . . . . . 8 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
4746eqcomd 2762 . . . . . . 7 ((𝜑𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)) = 𝑃)
4838, 47mpdan 705 . . . . . 6 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)) = 𝑃)
4936, 48eqtrd 2790 . . . . 5 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = 𝑃)
5049adantr 472 . . . 4 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = 𝑃)
5132, 50eqtrd 2790 . . 3 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = 𝑃)
5212, 51syl5eq 2802 . 2 ((𝜑𝑆 = 0) → 𝑄 = 𝑃)
5311, 52jca 555 1 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135  ifcif 4226   class class class wbr 4800  cmpt 4877  dom cdm 5262   Fn wfn 6040  wf 6041  cfv 6045  (class class class)co 6809  0cc0 10124   + caddc 10127  cle 10263  cmin 10454  ...cfz 12515  ..^cfzo 12655  chash 13307  Word cword 13473   cyclShift ccsh 13730  Vtxcvtx 26069  iEdgciedg 26070  Walkscwlks 26698  Circuitsccrcts 26886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-map 8021  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-inf 8510  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-fz 12516  df-fzo 12656  df-fl 12783  df-mod 12859  df-hash 13308  df-word 13481  df-concat 13483  df-substr 13485  df-csh 13731  df-wlks 26701  df-trls 26795  df-crcts 26888
This theorem is referenced by:  crctcshwlk  26921  crctcsh  26923
  Copyright terms: Public domain W3C validator