MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimplem2 Structured version   Visualization version   GIF version

Theorem cramerimplem2 20538
Description: Lemma 2 for cramerimp 20540: The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramerimp.a 𝐴 = (𝑁 Mat 𝑅)
cramerimp.b 𝐵 = (Base‘𝐴)
cramerimp.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
cramerimp.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimp.h 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
cramerimp.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramerimp.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
cramerimplem2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)

Proof of Theorem cramerimplem2
Dummy variables 𝑙 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cramerimp.m . . 3 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2651 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2651 . . 3 (.r𝑅) = (.r𝑅)
4 simpl 472 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ CRing)
543ad2ant1 1102 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ CRing)
6 cramerimp.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 cramerimp.b . . . . . . 7 𝐵 = (Base‘𝐴)
86, 7matrcl 20266 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 474 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
109adantr 480 . . . 4 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
11103ad2ant2 1103 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ∈ Fin)
129anim2i 592 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin))
1312ancomd 466 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
146, 2matbas2 20275 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
1513, 14syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
1615, 7syl6reqr 2704 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 = ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
1716eleq2d 2716 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))))
1817biimpd 219 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))))
1918ex 449 . . . . . . . . 9 (𝑅 ∈ CRing → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))))
2019adantr 480 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))))
2120com12 32 . . . . . . 7 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))))
2221pm2.43a 54 . . . . . 6 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))))
2322adantr 480 . . . . 5 ((𝑋𝐵𝑌𝑉) → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))))
2423impcom 445 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
25243adant3 1101 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
26 crngring 18604 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2726adantr 480 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
2827, 10anim12i 589 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
29283adant3 1101 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
30 ne0i 3954 . . . . . . . . 9 (𝐼𝑁𝑁 ≠ ∅)
3130adantl 481 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑁 ≠ ∅)
32313ad2ant1 1102 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ≠ ∅)
3311, 11, 323jca 1261 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
34 cramerimp.v . . . . . . . . . . 11 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
3534eleq2i 2722 . . . . . . . . . 10 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑𝑚 𝑁))
3635biimpi 206 . . . . . . . . 9 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑𝑚 𝑁))
3736adantl 481 . . . . . . . 8 ((𝑋𝐵𝑌𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑𝑚 𝑁))
384, 37anim12i 589 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑𝑚 𝑁)))
39383adant3 1101 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑𝑚 𝑁)))
40 simp3 1083 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 · 𝑍) = 𝑌)
41 eqid 2651 . . . . . . . 8 ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))
42 cramerimp.x . . . . . . . 8 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
43 eqid 2651 . . . . . . . 8 ((Base‘𝑅) ↑𝑚 𝑁) = ((Base‘𝑅) ↑𝑚 𝑁)
442, 41, 34, 42, 43mavmulsolcl 20405 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑𝑚 𝑁))) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
4544imp 444 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑𝑚 𝑁))) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
4633, 39, 40, 45syl21anc 1365 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
47 simpr 476 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
48473ad2ant1 1102 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐼𝑁)
49 cramerimp.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
50 eqid 2651 . . . . . . 7 (1r𝐴) = (1r𝐴)
516, 7, 34, 50ma1repvcl 20424 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
5249, 51syl5eqel 2734 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → 𝐸𝐵)
5329, 46, 48, 52syl12anc 1364 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸𝐵)
5416eqcomd 2657 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 𝐵)
5554ad2ant2r 798 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 𝐵)
56553adant3 1101 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 𝐵)
5753, 56eleqtrrd 2733 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
581, 2, 3, 5, 11, 11, 11, 25, 57mamuval 20240 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))))
59273ad2ant1 1102 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ Ring)
60593ad2ant1 1102 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
61 simpl 472 . . . . . . 7 ((𝑋𝐵𝑌𝑉) → 𝑋𝐵)
62613ad2ant2 1103 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋𝐵)
6362, 46, 483jca 1261 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋𝐵𝑍𝑉𝐼𝑁))
64633ad2ant1 1102 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋𝐵𝑍𝑉𝐼𝑁))
65 simp2 1082 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
66 simp3 1083 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
67403ad2ant1 1102 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋 · 𝑍) = 𝑌)
68 eqid 2651 . . . . 5 (0g𝑅) = (0g𝑅)
696, 7, 34, 50, 68, 49, 42mulmarep1gsum2 20428 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7060, 64, 65, 66, 67, 69syl113anc 1378 . . 3 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7170mpt2eq3dva 6761 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
72 cramerimp.h . . 3 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
73 simpr 476 . . . . 5 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
74733ad2ant2 1103 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑌𝑉)
75 eqid 2651 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
766, 7, 75, 34marepvval 20421 . . . 4 ((𝑋𝐵𝑌𝑉𝐼𝑁) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7762, 74, 48, 76syl3anc 1366 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7872, 77syl5req 2698 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))) = 𝐻)
7958, 71, 783eqtrd 2689 1 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  c0 3948  ifcif 4119  cop 4216  cotp 4218  cmpt 4762   × cxp 5141  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Fincfn 7997  Basecbs 15904  .rcmulr 15989  0gc0g 16147   Σg cgsu 16148  1rcur 18547  Ringcrg 18593  CRingccrg 18594   maMul cmmul 20237   Mat cmat 20261   maVecMul cmvmul 20394   matRepV cmatrepV 20411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-mvmul 20395  df-marepv 20413
This theorem is referenced by:  cramerimplem3  20539
  Copyright terms: Public domain W3C validator