MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimplem1 Structured version   Visualization version   GIF version

Theorem cramerimplem1 20711
Description: Lemma 1 for cramerimp 20714: The determinant of the identity matrix with the ith column replaced by a (column) vector equals the ith component of the vector. (Contributed by AV, 15-Feb-2019.) (Revised by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
cramerimplem1.a 𝐴 = (𝑁 Mat 𝑅)
cramerimplem1.b 𝐵 = (Base‘𝐴)
cramerimplem1.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
cramerimplem1.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimplem1.d 𝐷 = (𝑁 maDet 𝑅)
Assertion
Ref Expression
cramerimplem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝑍𝐼))

Proof of Theorem cramerimplem1
StepHypRef Expression
1 crngring 18778 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21anim2i 594 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
32ancomd 466 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
433adant3 1127 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
54adantr 472 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
6 simp3 1133 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
76anim1i 593 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐼𝑁𝑍𝑉))
8 cramerimplem1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
9 cramerimplem1.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
109fveq2i 6356 . . . . . 6 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
11 cramerimplem1.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
128, 10, 111marepvmarrepid 20603 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝐸)
135, 7, 12syl2anc 696 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝐸)
1413eqcomd 2766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝐸 = (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼))
1514fveq2d 6357 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)))
16 cramerimplem1.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
1716a1i 11 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝐷 = (𝑁 maDet 𝑅))
1817fveq1d 6355 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)) = ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)))
19 simpl2 1230 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝑅 ∈ CRing)
207ancomd 466 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝑍𝑉𝐼𝑁))
219eqcomi 2769 . . . . . . . 8 (𝑁 Mat 𝑅) = 𝐴
2221fveq2i 6356 . . . . . . 7 (Base‘(𝑁 Mat 𝑅)) = (Base‘𝐴)
23 eqid 2760 . . . . . . 7 (1r𝐴) = (1r𝐴)
249, 22, 8, 23ma1repvcl 20598 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
255, 20, 24syl2anc 696 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
2611, 25syl5eqel 2843 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝐸 ∈ (Base‘(𝑁 Mat 𝑅)))
276adantr 472 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝐼𝑁)
28 elmapi 8047 . . . . . . . . 9 (𝑍 ∈ ((Base‘𝑅) ↑𝑚 𝑁) → 𝑍:𝑁⟶(Base‘𝑅))
29 ffvelrn 6521 . . . . . . . . . 10 ((𝑍:𝑁⟶(Base‘𝑅) ∧ 𝐼𝑁) → (𝑍𝐼) ∈ (Base‘𝑅))
3029ex 449 . . . . . . . . 9 (𝑍:𝑁⟶(Base‘𝑅) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
3128, 30syl 17 . . . . . . . 8 (𝑍 ∈ ((Base‘𝑅) ↑𝑚 𝑁) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
3231, 8eleq2s 2857 . . . . . . 7 (𝑍𝑉 → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
3332com12 32 . . . . . 6 (𝐼𝑁 → (𝑍𝑉 → (𝑍𝐼) ∈ (Base‘𝑅)))
34333ad2ant3 1130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑍𝑉 → (𝑍𝐼) ∈ (Base‘𝑅)))
3534imp 444 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝑍𝐼) ∈ (Base‘𝑅))
36 smadiadetr 20703 . . . 4 (((𝑅 ∈ CRing ∧ 𝐸 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐼𝑁 ∧ (𝑍𝐼) ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)) = ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))))
3719, 26, 27, 35, 36syl22anc 1478 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)) = ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))))
3818, 37eqtrd 2794 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)) = ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))))
398, 10, 111marepvsma1 20611 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))
405, 7, 39syl2anc 696 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))
4140fveq2d 6357 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼)) = (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))))
4241oveq2d 6830 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))) = ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))))
43 diffi 8359 . . . . . . . . 9 (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin)
4443anim1i 593 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((𝑁 ∖ {𝐼}) ∈ Fin ∧ 𝑅 ∈ CRing))
4544ancomd 466 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
46453adant3 1127 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
4746adantr 472 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
48 eqid 2760 . . . . . 6 ((𝑁 ∖ {𝐼}) maDet 𝑅) = ((𝑁 ∖ {𝐼}) maDet 𝑅)
49 eqid 2760 . . . . . 6 ((𝑁 ∖ {𝐼}) Mat 𝑅) = ((𝑁 ∖ {𝐼}) Mat 𝑅)
50 eqid 2760 . . . . . 6 (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))
51 eqid 2760 . . . . . 6 (1r𝑅) = (1r𝑅)
5248, 49, 50, 51mdet1 20629 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) = (1r𝑅))
5347, 52syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) = (1r𝑅))
5453oveq2d 6830 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))) = ((𝑍𝐼)(.r𝑅)(1r𝑅)))
5513ad2ant2 1129 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
5655adantr 472 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝑅 ∈ Ring)
57 eqid 2760 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
58 eqid 2760 . . . . 5 (.r𝑅) = (.r𝑅)
5957, 58, 51ringridm 18792 . . . 4 ((𝑅 ∈ Ring ∧ (𝑍𝐼) ∈ (Base‘𝑅)) → ((𝑍𝐼)(.r𝑅)(1r𝑅)) = (𝑍𝐼))
6056, 35, 59syl2anc 696 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑍𝐼)(.r𝑅)(1r𝑅)) = (𝑍𝐼))
6142, 54, 603eqtrd 2798 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))) = (𝑍𝐼))
6215, 38, 613eqtrd 2798 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝑍𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  cdif 3712  {csn 4321  wf 6045  cfv 6049  (class class class)co 6814  𝑚 cmap 8025  Fincfn 8123  Basecbs 16079  .rcmulr 16164  1rcur 18721  Ringcrg 18767  CRingccrg 18768   Mat cmat 20435   matRRep cmarrep 20584   matRepV cmatrepV 20585   subMat csubma 20604   maDet cmdat 20612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-word 13505  df-lsw 13506  df-concat 13507  df-s1 13508  df-substr 13509  df-splice 13510  df-reverse 13511  df-s2 13813  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-0g 16324  df-gsum 16325  df-prds 16330  df-pws 16332  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-ghm 17879  df-gim 17922  df-cntz 17970  df-oppg 17996  df-symg 18018  df-pmtr 18082  df-psgn 18131  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-srg 18726  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-rnghom 18937  df-drng 18971  df-subrg 19000  df-lmod 19087  df-lss 19155  df-sra 19394  df-rgmod 19395  df-cnfld 19969  df-zring 20041  df-zrh 20074  df-dsmm 20298  df-frlm 20313  df-mamu 20412  df-mat 20436  df-marrep 20586  df-marepv 20587  df-subma 20605  df-mdet 20613  df-minmar1 20663
This theorem is referenced by:  cramerimp  20714
  Copyright terms: Public domain W3C validator