![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpncn | Structured version Visualization version GIF version |
Description: A Cn function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
cpncn | ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnprss 23888 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
2 | 1 | adantr 466 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝑆 ⊆ ℂ) |
3 | simpl 468 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝑆 ∈ {ℝ, ℂ}) | |
4 | 0nn0 11509 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 0 ∈ ℕ0) |
6 | elfvdm 6361 | . . . . . . . . . 10 ⊢ (𝐹 ∈ ((Cn‘𝑆)‘𝑁) → 𝑁 ∈ dom (Cn‘𝑆)) | |
7 | 6 | adantl 467 | . . . . . . . . 9 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝑁 ∈ dom (Cn‘𝑆)) |
8 | fncpn 23916 | . . . . . . . . . 10 ⊢ (𝑆 ⊆ ℂ → (Cn‘𝑆) Fn ℕ0) | |
9 | fndm 6130 | . . . . . . . . . 10 ⊢ ((Cn‘𝑆) Fn ℕ0 → dom (Cn‘𝑆) = ℕ0) | |
10 | 2, 8, 9 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → dom (Cn‘𝑆) = ℕ0) |
11 | 7, 10 | eleqtrd 2852 | . . . . . . . 8 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝑁 ∈ ℕ0) |
12 | nn0uz 11924 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
13 | 11, 12 | syl6eleq 2860 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝑁 ∈ (ℤ≥‘0)) |
14 | cpnord 23918 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 0 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘0)) → ((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘0)) | |
15 | 3, 5, 13, 14 | syl3anc 1476 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → ((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘0)) |
16 | simpr 471 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) | |
17 | 15, 16 | sseldd 3753 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝐹 ∈ ((Cn‘𝑆)‘0)) |
18 | elcpn 23917 | . . . . . 6 ⊢ ((𝑆 ⊆ ℂ ∧ 0 ∈ ℕ0) → (𝐹 ∈ ((Cn‘𝑆)‘0) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)))) | |
19 | 2, 5, 18 | syl2anc 573 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → (𝐹 ∈ ((Cn‘𝑆)‘0) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)))) |
20 | 17, 19 | mpbid 222 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ))) |
21 | 20 | simpld 482 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
22 | dvn0 23907 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) | |
23 | 2, 21, 22 | syl2anc 573 | . 2 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
24 | 20 | simprd 483 | . 2 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → ((𝑆 D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)) |
25 | 23, 24 | eqeltrrd 2851 | 1 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 {cpr 4318 dom cdm 5249 Fn wfn 6026 ‘cfv 6031 (class class class)co 6793 ↑pm cpm 8010 ℂcc 10136 ℝcr 10137 0cc0 10138 ℕ0cn0 11494 ℤ≥cuz 11888 –cn→ccncf 22899 D𝑛 cdvn 23848 Cnccpn 23849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-dvn 23852 df-cpn 23853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |