Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmidpmatlem3 Structured version   Visualization version   GIF version

Theorem cpmidpmatlem3 20800
 Description: Lemma 3 for cpmidpmat 20801. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
cpmidgsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmidgsum.b 𝐵 = (Base‘𝐴)
cpmidgsum.p 𝑃 = (Poly1𝑅)
cpmidgsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmidgsum.x 𝑋 = (var1𝑅)
cpmidgsum.e = (.g‘(mulGrp‘𝑃))
cpmidgsum.m · = ( ·𝑠𝑌)
cpmidgsum.1 1 = (1r𝑌)
cpmidgsum.u 𝑈 = (algSc‘𝑃)
cpmidgsum.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cpmidgsum.k 𝐾 = (𝐶𝑀)
cpmidgsum.h 𝐻 = (𝐾 · 1 )
cpmidgsumm2pm.o 𝑂 = (1r𝐴)
cpmidgsumm2pm.m = ( ·𝑠𝐴)
cpmidgsumm2pm.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmidpmat.g 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
Assertion
Ref Expression
cpmidpmatlem3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐺 finSupp (0g𝐴))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐻   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑌   𝑘,𝐾   𝑘,𝑂   ,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘)   𝑇(𝑘)   · (𝑘)   𝑈(𝑘)   1 (𝑘)   (𝑘)   𝐺(𝑘)   𝑋(𝑘)

Proof of Theorem cpmidpmatlem3
Dummy variables 𝑛 𝑙 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmidpmat.g . 2 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
2 fvexd 6316 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0g𝐴) ∈ V)
3 ovexd 6795 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → (((coe1𝐾)‘𝑘) 𝑂) ∈ V)
4 fveq2 6304 . . . 4 (𝑘 = 𝑙 → ((coe1𝐾)‘𝑘) = ((coe1𝐾)‘𝑙))
54oveq1d 6780 . . 3 (𝑘 = 𝑙 → (((coe1𝐾)‘𝑘) 𝑂) = (((coe1𝐾)‘𝑙) 𝑂))
6 fvexd 6316 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0g𝑅) ∈ V)
7 cpmidgsum.k . . . . . . 7 𝐾 = (𝐶𝑀)
8 cpmidgsum.c . . . . . . . 8 𝐶 = (𝑁 CharPlyMat 𝑅)
9 cpmidgsum.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
10 cpmidgsum.b . . . . . . . 8 𝐵 = (Base‘𝐴)
11 cpmidgsum.p . . . . . . . 8 𝑃 = (Poly1𝑅)
12 eqid 2724 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
138, 9, 10, 11, 12chpmatply1 20760 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
147, 13syl5eqel 2807 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘𝑃))
15 eqid 2724 . . . . . . 7 (coe1𝐾) = (coe1𝐾)
16 eqid 2724 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1715, 12, 11, 16coe1fvalcl 19705 . . . . . 6 ((𝐾 ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1𝐾)‘𝑛) ∈ (Base‘𝑅))
1814, 17sylan 489 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1𝐾)‘𝑛) ∈ (Base‘𝑅))
19 crngring 18679 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
20193ad2ant2 1126 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
21 eqid 2724 . . . . . . 7 (0g𝑅) = (0g𝑅)
2211, 12, 21mptcoe1fsupp 19708 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐾 ∈ (Base‘𝑃)) → (𝑛 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑛)) finSupp (0g𝑅))
2320, 14, 22syl2anc 696 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑛)) finSupp (0g𝑅))
246, 18, 23mptnn0fsuppr 12914 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑙 ∈ ℕ0 (𝑠 < 𝑙𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)))
25 csbfv 6346 . . . . . . . . . . . . . 14 𝑙 / 𝑛((coe1𝐾)‘𝑛) = ((coe1𝐾)‘𝑙)
2625a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) → 𝑙 / 𝑛((coe1𝐾)‘𝑛) = ((coe1𝐾)‘𝑙))
2726eqeq1d 2726 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) → (𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅) ↔ ((coe1𝐾)‘𝑙) = (0g𝑅)))
2827biimpa 502 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) ∧ 𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → ((coe1𝐾)‘𝑙) = (0g𝑅))
299matsca2 20349 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴))
30293adant3 1124 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝐴))
3130ad2antrr 764 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) ∧ 𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → 𝑅 = (Scalar‘𝐴))
3231fveq2d 6308 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) ∧ 𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → (0g𝑅) = (0g‘(Scalar‘𝐴)))
3328, 32eqtrd 2758 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) ∧ 𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → ((coe1𝐾)‘𝑙) = (0g‘(Scalar‘𝐴)))
3433oveq1d 6780 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) ∧ 𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → (((coe1𝐾)‘𝑙) 𝑂) = ((0g‘(Scalar‘𝐴)) 𝑂))
359matlmod 20358 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
3619, 35sylan2 492 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ LMod)
37363adant3 1124 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ LMod)
389matring 20372 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3919, 38sylan2 492 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
40 cpmidgsumm2pm.o . . . . . . . . . . . . . 14 𝑂 = (1r𝐴)
4110, 40ringidcl 18689 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑂𝐵)
4239, 41syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑂𝐵)
43423adant3 1124 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑂𝐵)
44 eqid 2724 . . . . . . . . . . . 12 (Scalar‘𝐴) = (Scalar‘𝐴)
45 cpmidgsumm2pm.m . . . . . . . . . . . 12 = ( ·𝑠𝐴)
46 eqid 2724 . . . . . . . . . . . 12 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
47 eqid 2724 . . . . . . . . . . . 12 (0g𝐴) = (0g𝐴)
4810, 44, 45, 46, 47lmod0vs 19019 . . . . . . . . . . 11 ((𝐴 ∈ LMod ∧ 𝑂𝐵) → ((0g‘(Scalar‘𝐴)) 𝑂) = (0g𝐴))
4937, 43, 48syl2anc 696 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((0g‘(Scalar‘𝐴)) 𝑂) = (0g𝐴))
5049ad2antrr 764 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) ∧ 𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → ((0g‘(Scalar‘𝐴)) 𝑂) = (0g𝐴))
5134, 50eqtrd 2758 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) ∧ 𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → (((coe1𝐾)‘𝑙) 𝑂) = (0g𝐴))
5251ex 449 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) → (𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅) → (((coe1𝐾)‘𝑙) 𝑂) = (0g𝐴)))
5352imim2d 57 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) → ((𝑠 < 𝑙𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → (𝑠 < 𝑙 → (((coe1𝐾)‘𝑙) 𝑂) = (0g𝐴))))
5453ralimdva 3064 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∀𝑙 ∈ ℕ0 (𝑠 < 𝑙𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → ∀𝑙 ∈ ℕ0 (𝑠 < 𝑙 → (((coe1𝐾)‘𝑙) 𝑂) = (0g𝐴))))
5554reximdv 3118 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑙 ∈ ℕ0 (𝑠 < 𝑙𝑙 / 𝑛((coe1𝐾)‘𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑙 ∈ ℕ0 (𝑠 < 𝑙 → (((coe1𝐾)‘𝑙) 𝑂) = (0g𝐴))))
5624, 55mpd 15 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑙 ∈ ℕ0 (𝑠 < 𝑙 → (((coe1𝐾)‘𝑙) 𝑂) = (0g𝐴)))
572, 3, 5, 56mptnn0fsuppd 12913 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) finSupp (0g𝐴))
581, 57syl5eqbr 4795 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐺 finSupp (0g𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103  ∀wral 3014  ∃wrex 3015  Vcvv 3304  ⦋csb 3639   class class class wbr 4760   ↦ cmpt 4837  ‘cfv 6001  (class class class)co 6765  Fincfn 8072   finSupp cfsupp 8391   < clt 10187  ℕ0cn0 11405  Basecbs 15980  Scalarcsca 16067   ·𝑠 cvsca 16068  0gc0g 16223  .gcmg 17662  mulGrpcmgp 18610  1rcur 18622  Ringcrg 18668  CRingccrg 18669  LModclmod 18986  algSccascl 19434  var1cv1 19669  Poly1cpl1 19670  coe1cco1 19671   Mat cmat 20336   matToPolyMat cmat2pmat 20632   CharPlyMat cchpmat 20754 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-addf 10128  ax-mulf 10129 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1578  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-ot 4294  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-ofr 7015  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-tpos 7472  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-sup 8464  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-xnn0 11477  df-z 11491  df-dec 11607  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-hash 13233  df-word 13406  df-lsw 13407  df-concat 13408  df-s1 13409  df-substr 13410  df-splice 13411  df-reverse 13412  df-s2 13714  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-0g 16225  df-gsum 16226  df-prds 16231  df-pws 16233  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-mhm 17457  df-submnd 17458  df-grp 17547  df-minusg 17548  df-sbg 17549  df-mulg 17663  df-subg 17713  df-ghm 17780  df-gim 17823  df-cntz 17871  df-oppg 17897  df-symg 17919  df-pmtr 17983  df-psgn 18032  df-cmn 18316  df-abl 18317  df-mgp 18611  df-ur 18623  df-ring 18670  df-cring 18671  df-oppr 18744  df-dvdsr 18762  df-unit 18763  df-invr 18793  df-dvr 18804  df-rnghom 18838  df-drng 18872  df-subrg 18901  df-lmod 18988  df-lss 19056  df-sra 19295  df-rgmod 19296  df-ascl 19437  df-psr 19479  df-mvr 19480  df-mpl 19481  df-opsr 19483  df-psr1 19673  df-vr1 19674  df-ply1 19675  df-coe1 19676  df-cnfld 19870  df-zring 19942  df-zrh 19975  df-dsmm 20199  df-frlm 20214  df-mamu 20313  df-mat 20337  df-mdet 20514  df-mat2pmat 20635  df-chpmat 20755 This theorem is referenced by:  cpmidpmat  20801
 Copyright terms: Public domain W3C validator