![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmadumatpolylem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for cpmadumatpoly 20911. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
cpmadumatpoly.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmadumatpoly.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmadumatpoly.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmadumatpoly.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmadumatpoly.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmadumatpoly.r | ⊢ × = (.r‘𝑌) |
cpmadumatpoly.m0 | ⊢ − = (-g‘𝑌) |
cpmadumatpoly.0 | ⊢ 0 = (0g‘𝑌) |
cpmadumatpoly.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
cpmadumatpoly.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpmadumatpoly.m1 | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmadumatpoly.1 | ⊢ 1 = (1r‘𝑌) |
cpmadumatpoly.z | ⊢ 𝑍 = (var1‘𝑅) |
cpmadumatpoly.d | ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) |
cpmadumatpoly.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
cpmadumatpoly.w | ⊢ 𝑊 = (Base‘𝑌) |
cpmadumatpoly.q | ⊢ 𝑄 = (Poly1‘𝐴) |
cpmadumatpoly.x | ⊢ 𝑋 = (var1‘𝐴) |
cpmadumatpoly.m2 | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
cpmadumatpoly.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
cpmadumatpoly.u | ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
Ref | Expression |
---|---|
cpmadumatpolylem2 | ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6366 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (0g‘𝐴) ∈ V) | |
2 | crngring 18779 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | 2 | anim2i 594 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
4 | 3 | 3adant3 1127 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
5 | 4 | ad2antrr 764 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
6 | cpmadumatpoly.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
7 | cpmadumatpoly.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | cpmadumatpoly.y | . . . 4 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
9 | 6, 7, 8 | 0elcpmat 20750 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝑌) ∈ 𝑆) |
10 | 5, 9 | syl 17 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (0g‘𝑌) ∈ 𝑆) |
11 | cpmadumatpoly.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
12 | cpmadumatpoly.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
13 | cpmadumatpoly.r | . . . . 5 ⊢ × = (.r‘𝑌) | |
14 | cpmadumatpoly.m0 | . . . . 5 ⊢ − = (-g‘𝑌) | |
15 | cpmadumatpoly.0 | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
16 | cpmadumatpoly.t | . . . . 5 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
17 | cpmadumatpoly.g | . . . . 5 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
18 | 11, 12, 7, 8, 13, 14, 15, 16, 17, 6 | chfacfisfcpmat 20883 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |
19 | 2, 18 | syl3anl2 1522 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |
20 | 19 | anassrs 683 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝐺:ℕ0⟶𝑆) |
21 | cpmadumatpoly.u | . . . 4 ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) | |
22 | 11, 12, 6, 21 | cpm2mf 20780 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:𝑆⟶𝐵) |
23 | 5, 22 | syl 17 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑈:𝑆⟶𝐵) |
24 | ssid 3766 | . . 3 ⊢ 𝑆 ⊆ 𝑆 | |
25 | 24 | a1i 11 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑆 ⊆ 𝑆) |
26 | nn0ex 11511 | . . 3 ⊢ ℕ0 ∈ V | |
27 | 26 | a1i 11 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → ℕ0 ∈ V) |
28 | ovex 6843 | . . . 4 ⊢ (𝑁 ConstPolyMat 𝑅) ∈ V | |
29 | 6, 28 | eqeltri 2836 | . . 3 ⊢ 𝑆 ∈ V |
30 | 29 | a1i 11 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑆 ∈ V) |
31 | 11, 12, 7, 8, 13, 14, 15, 16, 17 | chfacffsupp 20884 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺 finSupp (0g‘𝑌)) |
32 | 31 | anassrs 683 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝐺 finSupp (0g‘𝑌)) |
33 | eqid 2761 | . . . . . 6 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
34 | eqid 2761 | . . . . . 6 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
35 | 11, 21, 7, 8, 33, 34 | m2cpminv0 20789 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
36 | 2, 35 | sylan2 492 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
37 | 36 | 3adant3 1127 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
38 | 37 | ad2antrr 764 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
39 | 1, 10, 20, 23, 25, 27, 30, 32, 38 | fsuppcor 8477 | 1 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ⊆ wss 3716 ifcif 4231 class class class wbr 4805 ↦ cmpt 4882 ∘ ccom 5271 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ↑𝑚 cmap 8026 Fincfn 8124 finSupp cfsupp 8443 0cc0 10149 1c1 10150 + caddc 10152 < clt 10287 − cmin 10479 ℕcn 11233 ℕ0cn0 11505 ...cfz 12540 Basecbs 16080 .rcmulr 16165 ·𝑠 cvsca 16168 0gc0g 16323 -gcsg 17646 .gcmg 17762 mulGrpcmgp 18710 1rcur 18722 Ringcrg 18768 CRingccrg 18769 var1cv1 19769 Poly1cpl1 19770 Mat cmat 20436 maAdju cmadu 20661 ConstPolyMat ccpmat 20731 matToPolyMat cmat2pmat 20732 cPolyMatToMat ccpmat2mat 20733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-ot 4331 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-ofr 7065 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-sup 8516 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-fz 12541 df-fzo 12681 df-seq 13017 df-hash 13333 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-hom 16189 df-cco 16190 df-0g 16325 df-gsum 16326 df-prds 16331 df-pws 16333 df-mre 16469 df-mrc 16470 df-acs 16472 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-mhm 17557 df-submnd 17558 df-grp 17647 df-minusg 17648 df-sbg 17649 df-mulg 17763 df-subg 17813 df-ghm 17880 df-cntz 17971 df-cmn 18416 df-abl 18417 df-mgp 18711 df-ur 18723 df-srg 18727 df-ring 18770 df-cring 18771 df-subrg 19001 df-lmod 19088 df-lss 19156 df-sra 19395 df-rgmod 19396 df-ascl 19537 df-psr 19579 df-mvr 19580 df-mpl 19581 df-opsr 19583 df-psr1 19773 df-vr1 19774 df-ply1 19775 df-coe1 19776 df-dsmm 20299 df-frlm 20314 df-mamu 20413 df-mat 20437 df-cpmat 20734 df-mat2pmat 20735 df-cpmat2mat 20736 |
This theorem is referenced by: cpmadumatpoly 20911 chcoeffeqlem 20913 |
Copyright terms: Public domain | W3C validator |