MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumlemB Structured version   Visualization version   GIF version

Theorem cpmadugsumlemB 20901
Description: Lemma B for cpmadugsum 20905. (Contributed by AV, 2-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
Assertion
Ref Expression
cpmadugsumlemB (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏   𝑖,𝑠
Allowed substitution hints:   𝐴(𝑖,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑖,𝑠,𝑏)   · (𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑠,𝑏)   (𝑖,𝑠,𝑏)   𝑀(𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑠,𝑏)   𝑌(𝑠,𝑏)

Proof of Theorem cpmadugsumlemB
StepHypRef Expression
1 crngring 18778 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 cpmadugsum.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
32ply1ring 19840 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
543ad2ant2 1129 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
6 eqid 2760 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
76ringmgp 18773 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
85, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
98ad2antrr 764 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
10 elfznn0 12646 . . . . . . . . 9 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
1110adantl 473 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0)
12 1nn0 11520 . . . . . . . . 9 1 ∈ ℕ0
1312a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ ℕ0)
1413ad2ant2 1129 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
15 cpmadugsum.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
16 eqid 2760 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
1715, 2, 16vr1cl 19809 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
1814, 17syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
1918ad2antrr 764 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃))
206, 16mgpbas 18715 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
21 cpmadugsum.e . . . . . . . . 9 = (.g‘(mulGrp‘𝑃))
22 eqid 2760 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
236, 22mgpplusg 18713 . . . . . . . . 9 (.r𝑃) = (+g‘(mulGrp‘𝑃))
2420, 21, 23mulgnn0dir 17792 . . . . . . . 8 (((mulGrp‘𝑃) ∈ Mnd ∧ (𝑖 ∈ ℕ0 ∧ 1 ∈ ℕ0𝑋 ∈ (Base‘𝑃))) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r𝑃)(1 𝑋)))
259, 11, 13, 19, 24syl13anc 1479 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r𝑃)(1 𝑋)))
262ply1crng 19790 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
2726anim2i 594 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
28273adant3 1127 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
29 cpmadugsum.y . . . . . . . . . . . 12 𝑌 = (𝑁 Mat 𝑃)
3029matsca2 20448 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
3128, 30syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
3231ad2antrr 764 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 = (Scalar‘𝑌))
3332fveq2d 6357 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (.r𝑃) = (.r‘(Scalar‘𝑌)))
34 eqidd 2761 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) = (𝑖 𝑋))
3520, 21mulg1 17769 . . . . . . . . . 10 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
3618, 35syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1 𝑋) = 𝑋)
3736ad2antrr 764 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (1 𝑋) = 𝑋)
3833, 34, 37oveq123d 6835 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋)(.r𝑃)(1 𝑋)) = ((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋))
3925, 38eqtrd 2794 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋))
404anim2i 594 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
41403adant3 1127 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
4229matring 20471 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring)
4341, 42syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
4443ad2antrr 764 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring)
45 simpll1 1255 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin)
4614ad2antrr 764 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
47 simplrl 819 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0)
48 simprr 813 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑏 ∈ (𝐵𝑚 (0...𝑠)))
4948anim1i 593 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵𝑚 (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠)))
50 cpmadugsum.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
51 cpmadugsum.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
52 cpmadugsum.t . . . . . . . . . 10 𝑇 = (𝑁 matToPolyMat 𝑅)
5350, 51, 2, 29, 52m2pmfzmap 20774 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵𝑚 (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
5445, 46, 47, 49, 53syl31anc 1480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
55 eqid 2760 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
56 cpmadugsum.r . . . . . . . . 9 × = (.r𝑌)
57 cpmadugsum.1 . . . . . . . . 9 1 = (1r𝑌)
5855, 56, 57ringlidm 18791 . . . . . . . 8 ((𝑌 ∈ Ring ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ( 1 × (𝑇‘(𝑏𝑖))) = (𝑇‘(𝑏𝑖)))
5944, 54, 58syl2anc 696 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ( 1 × (𝑇‘(𝑏𝑖))) = (𝑇‘(𝑏𝑖)))
6059eqcomd 2766 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) = ( 1 × (𝑇‘(𝑏𝑖))))
6139, 60oveq12d 6832 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
6229matassa 20472 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑌 ∈ AssAlg)
6327, 62syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
64633adant3 1127 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ AssAlg)
6564ad2antrr 764 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ AssAlg)
6631eqcomd 2766 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
6766fveq2d 6357 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
6818, 67eleqtrrd 2842 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
6968ad2antrr 764 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
7020, 21mulgnn0cl 17779 . . . . . . . . 9 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑖 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝑖 𝑋) ∈ (Base‘𝑃))
719, 11, 19, 70syl3anc 1477 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
7267ad2antrr 764 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
7371, 72eleqtrrd 2842 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
7440, 42syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
75743adant3 1127 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
7655, 57ringidcl 18788 . . . . . . . . 9 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
7775, 76syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
7877ad2antrr 764 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ (Base‘𝑌))
79 eqid 2760 . . . . . . . 8 (Scalar‘𝑌) = (Scalar‘𝑌)
80 eqid 2760 . . . . . . . 8 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
81 eqid 2760 . . . . . . . 8 (.r‘(Scalar‘𝑌)) = (.r‘(Scalar‘𝑌))
82 cpmadugsum.m . . . . . . . 8 · = ( ·𝑠𝑌)
8355, 79, 80, 81, 82, 56assa2ass 19544 . . . . . . 7 ((𝑌 ∈ AssAlg ∧ (𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌))) ∧ ( 1 ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))) → ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
8465, 69, 73, 78, 54, 83syl122anc 1486 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
8584eqcomd 2766 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))) = ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
8661, 85eqtrd 2794 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
8786mpteq2dva 4896 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))
8887oveq2d 6830 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
89 eqid 2760 . . 3 (0g𝑌) = (0g𝑌)
90 eqid 2760 . . 3 (+g𝑌) = (+g𝑌)
9175adantr 472 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑌 ∈ Ring)
92 ovexd 6844 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (0...𝑠) ∈ V)
9329matlmod 20457 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ LMod)
9440, 93syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
95943adant3 1127 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
961adantl 473 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
9796, 17syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
9827, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
9998eqcomd 2766 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑌) = 𝑃)
10099fveq2d 6357 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
10197, 100eleqtrrd 2842 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
1021013adant3 1127 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
10343, 76syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
10455, 79, 82, 80lmodvscl 19102 . . . . 5 ((𝑌 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
10595, 102, 103, 104syl3anc 1477 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
106105adantr 472 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
10795ad2antrr 764 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod)
10830eqcomd 2766 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → (Scalar‘𝑌) = 𝑃)
109108fveq2d 6357 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
11028, 109syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
111110eleq2d 2825 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
112111ad2antrr 764 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
11371, 112mpbird 247 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
11455, 79, 82, 80lmodvscl 19102 . . . 4 ((𝑌 ∈ LMod ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
115107, 113, 54, 114syl3anc 1477 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
116 simpl1 1228 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑁 ∈ Fin)
11714adantr 472 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑅 ∈ Ring)
118 simprl 811 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑠 ∈ ℕ0)
119 eqid 2760 . . . . 5 (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))
120 fzfid 12986 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (0...𝑠) ∈ Fin)
121 ovexd 6844 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ V)
122 fvexd 6365 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (0g𝑌) ∈ V)
123119, 120, 121, 122fsuppmptdm 8453 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
124116, 117, 118, 48, 123syl31anc 1480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
12555, 89, 90, 56, 91, 92, 106, 115, 124gsummulc2 18827 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
12688, 125eqtr2d 2795 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  Vcvv 3340   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6814  𝑚 cmap 8025  Fincfn 8123   finSupp cfsupp 8442  0cc0 10148  1c1 10149   + caddc 10151  0cn0 11504  ...cfz 12539  Basecbs 16079  +gcplusg 16163  .rcmulr 16164  Scalarcsca 16166   ·𝑠 cvsca 16167  0gc0g 16322   Σg cgsu 16323  Mndcmnd 17515  .gcmg 17761  mulGrpcmgp 18709  1rcur 18721  Ringcrg 18767  CRingccrg 18768  LModclmod 19085  AssAlgcasa 19531  var1cv1 19768  Poly1cpl1 19769   Mat cmat 20435   matToPolyMat cmat2pmat 20731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-fzo 12680  df-seq 13016  df-hash 13332  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-0g 16324  df-gsum 16325  df-prds 16330  df-pws 16332  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-subrg 19000  df-lmod 19087  df-lss 19155  df-sra 19394  df-rgmod 19395  df-assa 19534  df-ascl 19536  df-psr 19578  df-mvr 19579  df-mpl 19580  df-opsr 19582  df-psr1 19772  df-vr1 19773  df-ply1 19774  df-dsmm 20298  df-frlm 20313  df-mamu 20412  df-mat 20436  df-mat2pmat 20734
This theorem is referenced by:  cpmadugsumlemF  20903
  Copyright terms: Public domain W3C validator