![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmadugsum | Structured version Visualization version GIF version |
Description: The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
cpmadugsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmadugsum.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmadugsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmadugsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmadugsum.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmadugsum.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmadugsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
cpmadugsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmadugsum.r | ⊢ × = (.r‘𝑌) |
cpmadugsum.1 | ⊢ 1 = (1r‘𝑌) |
cpmadugsum.g | ⊢ + = (+g‘𝑌) |
cpmadugsum.s | ⊢ − = (-g‘𝑌) |
cpmadugsum.i | ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
cpmadugsum.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
cpmadugsum.0 | ⊢ 0 = (0g‘𝑌) |
cpmadugsum.g2 | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
Ref | Expression |
---|---|
cpmadugsum | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmadugsum.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | cpmadugsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | cpmadugsum.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | cpmadugsum.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
5 | cpmadugsum.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
6 | cpmadugsum.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
7 | cpmadugsum.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
8 | cpmadugsum.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
9 | cpmadugsum.r | . . 3 ⊢ × = (.r‘𝑌) | |
10 | cpmadugsum.1 | . . 3 ⊢ 1 = (1r‘𝑌) | |
11 | cpmadugsum.g | . . 3 ⊢ + = (+g‘𝑌) | |
12 | cpmadugsum.s | . . 3 ⊢ − = (-g‘𝑌) | |
13 | cpmadugsum.i | . . 3 ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
14 | cpmadugsum.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑃) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cpmadugsumfi 20901 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
16 | simpr 471 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ (𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) → (𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | |
17 | cpmadugsum.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑌) | |
18 | cpmadugsum.g2 | . . . . . . . 8 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
19 | 1, 2, 3, 4, 9, 12, 17, 5, 18, 6, 8, 7, 11 | chfacfscmulgsum 20884 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
20 | 19 | eqcomd 2776 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
21 | 20 | adantr 466 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ (𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
22 | 16, 21 | eqtrd 2804 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ (𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) → (𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
23 | 22 | ex 397 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) → (𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))))) |
24 | 23 | reximdvva 3166 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))))) |
25 | 15, 24 | mpd 15 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 ifcif 4223 class class class wbr 4784 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 ↑𝑚 cmap 8008 Fincfn 8108 0cc0 10137 1c1 10138 + caddc 10140 < clt 10275 − cmin 10467 ℕcn 11221 ℕ0cn0 11493 ...cfz 12532 Basecbs 16063 +gcplusg 16148 .rcmulr 16149 ·𝑠 cvsca 16152 0gc0g 16307 Σg cgsu 16308 -gcsg 17631 .gcmg 17747 mulGrpcmgp 18696 1rcur 18708 CRingccrg 18755 var1cv1 19760 Poly1cpl1 19761 Mat cmat 20429 maAdju cmadu 20655 matToPolyMat cmat2pmat 20728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-xor 1612 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-ot 4323 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-ofr 7044 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-tpos 7503 df-cur 7544 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-sup 8503 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-xnn0 11565 df-z 11579 df-dec 11695 df-uz 11888 df-rp 12035 df-fz 12533 df-fzo 12673 df-seq 13008 df-exp 13067 df-hash 13321 df-word 13494 df-lsw 13495 df-concat 13496 df-s1 13497 df-substr 13498 df-splice 13499 df-reverse 13500 df-s2 13801 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-0g 16309 df-gsum 16310 df-prds 16315 df-pws 16317 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 df-subg 17798 df-ghm 17865 df-gim 17908 df-cntz 17956 df-oppg 17982 df-symg 18004 df-pmtr 18068 df-psgn 18117 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-srg 18713 df-ring 18756 df-cring 18757 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-invr 18879 df-dvr 18890 df-rnghom 18924 df-drng 18958 df-subrg 18987 df-lmod 19074 df-lss 19142 df-sra 19386 df-rgmod 19387 df-assa 19526 df-ascl 19528 df-psr 19570 df-mvr 19571 df-mpl 19572 df-opsr 19574 df-psr1 19764 df-vr1 19765 df-ply1 19766 df-coe1 19767 df-cnfld 19961 df-zring 20033 df-zrh 20066 df-dsmm 20292 df-frlm 20307 df-mamu 20406 df-mat 20430 df-mdet 20608 df-madu 20657 df-mat2pmat 20731 df-decpmat 20787 |
This theorem is referenced by: cpmidgsum2 20903 cpmadumatpoly 20907 |
Copyright terms: Public domain | W3C validator |