MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mvalel Structured version   Visualization version   GIF version

Theorem cpm2mvalel 20776
Description: A (matrix) element of the result of an inverse matrix transformation. (Contributed by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
cpm2mfval.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
cpm2mfval.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
cpm2mvalel (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝐼𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0))

Proof of Theorem cpm2mvalel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpm2mfval.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 cpm2mfval.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mval 20775 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
43adantr 466 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
5 oveq12 6805 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌))
65fveq2d 6337 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑋𝑀𝑌)))
76fveq1d 6335 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0))
87adantl 467 . 2 ((((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0))
9 simprl 754 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → 𝑋𝑁)
10 simprr 756 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → 𝑌𝑁)
11 fvexd 6346 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → ((coe1‘(𝑋𝑀𝑌))‘0) ∈ V)
124, 8, 9, 10, 11ovmpt2d 6939 1 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝐼𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  cfv 6030  (class class class)co 6796  cmpt2 6798  Fincfn 8113  0cc0 10142  coe1cco1 19763   ConstPolyMat ccpmat 20728   cPolyMatToMat ccpmat2mat 20730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-cpmat2mat 20733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator