Step | Hyp | Ref
| Expression |
1 | | cply1mul.p |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | cply1mul.m |
. . . . . . . . . 10
⊢ × =
(.r‘𝑃) |
3 | | eqid 2651 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
4 | | cply1mul.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑃) |
5 | 1, 2, 3, 4 | coe1mul 19688 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
6 | 5 | 3expb 1285 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) →
(coe1‘(𝐹
×
𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
8 | 7 | adantr 480 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
(coe1‘(𝐹
×
𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
9 | | oveq2 6698 |
. . . . . . . . 9
⊢ (𝑠 = 𝑛 → (0...𝑠) = (0...𝑛)) |
10 | | oveq1 6697 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑛 → (𝑠 − 𝑘) = (𝑛 − 𝑘)) |
11 | 10 | fveq2d 6233 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑛 → ((coe1‘𝐺)‘(𝑠 − 𝑘)) = ((coe1‘𝐺)‘(𝑛 − 𝑘))) |
12 | 11 | oveq2d 6706 |
. . . . . . . . 9
⊢ (𝑠 = 𝑛 → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))) = (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) |
13 | 9, 12 | mpteq12dv 4766 |
. . . . . . . 8
⊢ (𝑠 = 𝑛 → (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) |
14 | 13 | oveq2d 6706 |
. . . . . . 7
⊢ (𝑠 = 𝑛 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
15 | 14 | adantl 481 |
. . . . . 6
⊢
(((((𝑅 ∈ Ring
∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 = 𝑛) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
16 | | nnnn0 11337 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
17 | 16 | adantl 481 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ0) |
18 | | ovexd 6720 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) ∈ V) |
19 | 8, 15, 17, 18 | fvmptd 6327 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
((coe1‘(𝐹
×
𝐺))‘𝑛) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
20 | | r19.26 3093 |
. . . . . . . . . 10
⊢
(∀𝑐 ∈
ℕ (((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) ↔ (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 )) |
21 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝑛 − 𝑘) = (𝑛 − 0)) |
22 | | nncn 11066 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
23 | 22 | subid1d 10419 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → (𝑛 − 0) = 𝑛) |
24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑛 − 0) = 𝑛) |
25 | 21, 24 | sylan9eqr 2707 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛 − 𝑘) = 𝑛) |
26 | | simpll 805 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑛 ∈ ℕ) |
27 | 25, 26 | eqeltrd 2730 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛 − 𝑘) ∈ ℕ) |
28 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = (𝑛 − 𝑘) → ((coe1‘𝐺)‘𝑐) = ((coe1‘𝐺)‘(𝑛 − 𝑘))) |
29 | 28 | eqeq1d 2653 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = (𝑛 − 𝑘) → (((coe1‘𝐺)‘𝑐) = 0 ↔
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
30 | 29 | rspcv 3336 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 𝑘) ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 →
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
31 | 27, 30 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (∀𝑐 ∈ ℕ ((coe1‘𝐺)‘𝑐) = 0 →
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
32 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 )) |
33 | | simpll 805 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → 𝑅 ∈ Ring) |
34 | | simpl 472 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹 ∈ 𝐵) |
36 | | elfznn0 12471 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
37 | 36 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0) |
39 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
40 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(Base‘𝑅) =
(Base‘𝑅) |
41 | 39, 4, 1, 40 | coe1fvalcl 19630 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) |
42 | 35, 38, 41 | syl2an 493 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → ((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) |
43 | | cply1mul.0 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 =
(0g‘𝑅) |
44 | 40, 3, 43 | ringrz 18634 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 ) = 0 ) |
45 | 33, 42, 44 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 ) = 0 ) |
46 | 32, 45 | sylan9eqr 2707 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) ∧ ((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 ) →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
47 | 46 | ex 449 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
48 | 47 | expcom 450 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
49 | 48 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
50 | 31, 49 | syldc 48 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
51 | 50 | expd 451 |
. . . . . . . . . . . . . 14
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
52 | 51 | com24 95 |
. . . . . . . . . . . . 13
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
53 | 52 | adantl 481 |
. . . . . . . . . . . 12
⊢
((∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
54 | 53 | com13 88 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
55 | | df-ne 2824 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ≠ 0 ↔ ¬ 𝑘 = 0) |
56 | 55 | biimpri 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑘 = 0 → 𝑘 ≠ 0) |
57 | 56, 36 | anim12ci 590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0)) |
58 | | elnnne0 11344 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0
∧ 𝑘 ≠
0)) |
59 | 57, 58 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ) |
60 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 𝑘 → ((coe1‘𝐹)‘𝑐) = ((coe1‘𝐹)‘𝑘)) |
61 | 60 | eqeq1d 2653 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑘 → (((coe1‘𝐹)‘𝑐) = 0 ↔
((coe1‘𝐹)‘𝑘) = 0 )) |
62 | 61 | rspcv 3336 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ →
(∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
((coe1‘𝐹)‘𝑘) = 0 )) |
63 | 59, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
((coe1‘𝐹)‘𝑘) = 0 )) |
64 | | oveq1 6697 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) |
65 | | simpll 805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → 𝑅 ∈ Ring) |
66 | 4 | eleq2i 2722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐺 ∈ 𝐵 ↔ 𝐺 ∈ (Base‘𝑃)) |
67 | 66 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐺 ∈ 𝐵 → 𝐺 ∈ (Base‘𝑃)) |
68 | 67 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ (Base‘𝑃)) |
69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺 ∈ (Base‘𝑃)) |
70 | | fznn0sub 12411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
71 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
72 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(Base‘𝑃) =
(Base‘𝑃) |
73 | 71, 72, 1, 40 | coe1fvalcl 19630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐺 ∈ (Base‘𝑃) ∧ (𝑛 − 𝑘) ∈ ℕ0) →
((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) |
74 | 69, 70, 73 | syl2an 493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) |
75 | 40, 3, 43 | ringlz 18633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
76 | 65, 74, 75 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
77 | 64, 76 | sylan9eqr 2707 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) ∧ ((coe1‘𝐹)‘𝑘) = 0 ) →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
78 | 77 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
79 | 78 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
80 | 79 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
81 | 80 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
82 | 81 | com14 96 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
83 | 82 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
84 | 63, 83 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
85 | 84 | com24 95 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
86 | 85 | ex 449 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 0 → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))))) |
87 | 86 | com14 96 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))))) |
88 | 87 | imp 444 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
89 | 88 | com14 96 |
. . . . . . . . . . . . 13
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
90 | 89 | adantr 480 |
. . . . . . . . . . . 12
⊢
((∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
91 | 90 | com13 88 |
. . . . . . . . . . 11
⊢ (¬
𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
92 | 54, 91 | pm2.61i 176 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
93 | 20, 92 | syl5bi 232 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
94 | 93 | imp 444 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
95 | 94 | impl 649 |
. . . . . . 7
⊢
(((((𝑅 ∈ Ring
∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
96 | 95 | mpteq2dva 4777 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ 0 )) |
97 | 96 | oveq2d 6706 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 ))) |
98 | | ringmnd 18602 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
99 | | ovexd 6720 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (0...𝑛) ∈ V) |
100 | 43 | gsumz 17421 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
101 | 98, 99, 100 | syl2anc 694 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
102 | 101 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
103 | 102 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
104 | 103 | adantr 480 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
105 | 19, 97, 104 | 3eqtrd 2689 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
106 | 105 | ralrimiva 2995 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ∀𝑛 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
107 | | fveq2 6229 |
. . . . 5
⊢ (𝑐 = 𝑛 → ((coe1‘(𝐹 × 𝐺))‘𝑐) = ((coe1‘(𝐹 × 𝐺))‘𝑛)) |
108 | 107 | eqeq1d 2653 |
. . . 4
⊢ (𝑐 = 𝑛 → (((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 )) |
109 | 108 | cbvralv 3201 |
. . 3
⊢
(∀𝑐 ∈
ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔ ∀𝑛 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
110 | 106, 109 | sylibr 224 |
. 2
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ∀𝑐 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑐) = 0 ) |
111 | 110 | ex 449 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑐) = 0 )) |