![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplgruvtxbOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of cplgruvtxb 26542 as of 15-Feb-2022. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cplgruvtxbOLD | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | iscplgr 26544 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
3 | 1 | uvtxisvtx 26515 | . . . . . . . . 9 ⊢ (𝑔 ∈ (UnivVtx‘𝐺) → 𝑔 ∈ 𝑉) |
4 | 3 | adantl 467 | . . . . . . . 8 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑔 ∈ (UnivVtx‘𝐺)) → 𝑔 ∈ 𝑉) |
5 | 4 | ralrimiva 3114 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑊 → ∀𝑔 ∈ (UnivVtx‘𝐺)𝑔 ∈ 𝑉) |
6 | dfss3 3739 | . . . . . . 7 ⊢ ((UnivVtx‘𝐺) ⊆ 𝑉 ↔ ∀𝑔 ∈ (UnivVtx‘𝐺)𝑔 ∈ 𝑉) | |
7 | 5, 6 | sylibr 224 | . . . . . 6 ⊢ (𝐺 ∈ 𝑊 → (UnivVtx‘𝐺) ⊆ 𝑉) |
8 | 7 | adantr 466 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) → (UnivVtx‘𝐺) ⊆ 𝑉) |
9 | dfss3 3739 | . . . . . . 7 ⊢ (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
10 | 9 | biimpri 218 | . . . . . 6 ⊢ (∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺) → 𝑉 ⊆ (UnivVtx‘𝐺)) |
11 | 10 | adantl 467 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) → 𝑉 ⊆ (UnivVtx‘𝐺)) |
12 | 8, 11 | eqssd 3767 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) → (UnivVtx‘𝐺) = 𝑉) |
13 | 12 | ex 397 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺) → (UnivVtx‘𝐺) = 𝑉)) |
14 | raleleq 3304 | . . . 4 ⊢ (𝑉 = (UnivVtx‘𝐺) → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
15 | 14 | eqcoms 2778 | . . 3 ⊢ ((UnivVtx‘𝐺) = 𝑉 → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
16 | 13, 15 | impbid1 215 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺) ↔ (UnivVtx‘𝐺) = 𝑉)) |
17 | 2, 16 | bitrd 268 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ⊆ wss 3721 ‘cfv 6031 Vtxcvtx 26094 UnivVtxcuvtx 26509 ComplGraphccplgr 26538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-uvtx 26510 df-cplgr 26540 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |