Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr3v Structured version   Visualization version   GIF version

Theorem cplgr3v 26566
 Description: A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
cplgr3v.e 𝐸 = (Edg‘𝐺)
cplgr3v.t (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
cplgr3v (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))

Proof of Theorem cplgr3v
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplgr3v.t . . . . 5 (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
21eqcomi 2780 . . . 4 {𝐴, 𝐵, 𝐶} = (Vtx‘𝐺)
32iscplgrnb 26547 . . 3 (𝐺 ∈ UPGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
433ad2ant2 1128 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
5 sneq 4326 . . . . . 6 (𝑣 = 𝐴 → {𝑣} = {𝐴})
65difeq2d 3879 . . . . 5 (𝑣 = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴}))
7 tprot 4420 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
87difeq1i 3875 . . . . . . 7 ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = ({𝐵, 𝐶, 𝐴} ∖ {𝐴})
9 necom 2996 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
10 necom 2996 . . . . . . . . 9 (𝐴𝐶𝐶𝐴)
11 diftpsn3 4468 . . . . . . . . 9 ((𝐵𝐴𝐶𝐴) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
129, 10, 11syl2anb 585 . . . . . . . 8 ((𝐴𝐵𝐴𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
13123adant3 1126 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
148, 13syl5eq 2817 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶})
15143ad2ant3 1129 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶})
166, 15sylan9eqr 2827 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐵, 𝐶})
17 oveq2 6801 . . . . . 6 (𝑣 = 𝐴 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐴))
1817eleq2d 2836 . . . . 5 (𝑣 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
1918adantl 467 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
2016, 19raleqbidv 3301 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
21 sneq 4326 . . . . . 6 (𝑣 = 𝐵 → {𝑣} = {𝐵})
2221difeq2d 3879 . . . . 5 (𝑣 = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵}))
23 tprot 4420 . . . . . . . . 9 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
2423eqcomi 2780 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}
2524difeq1i 3875 . . . . . . 7 ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = ({𝐶, 𝐴, 𝐵} ∖ {𝐵})
26 necom 2996 . . . . . . . . . . . 12 (𝐵𝐶𝐶𝐵)
2726biimpi 206 . . . . . . . . . . 11 (𝐵𝐶𝐶𝐵)
2827anim2i 603 . . . . . . . . . 10 ((𝐴𝐵𝐵𝐶) → (𝐴𝐵𝐶𝐵))
2928ancomd 453 . . . . . . . . 9 ((𝐴𝐵𝐵𝐶) → (𝐶𝐵𝐴𝐵))
30 diftpsn3 4468 . . . . . . . . 9 ((𝐶𝐵𝐴𝐵) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
3129, 30syl 17 . . . . . . . 8 ((𝐴𝐵𝐵𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
32313adant2 1125 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
3325, 32syl5eq 2817 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴})
34333ad2ant3 1129 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴})
3522, 34sylan9eqr 2827 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐶, 𝐴})
36 oveq2 6801 . . . . . 6 (𝑣 = 𝐵 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐵))
3736eleq2d 2836 . . . . 5 (𝑣 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
3837adantl 467 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
3935, 38raleqbidv 3301 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
40 sneq 4326 . . . . . 6 (𝑣 = 𝐶 → {𝑣} = {𝐶})
4140difeq2d 3879 . . . . 5 (𝑣 = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}))
42 diftpsn3 4468 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
43423adant1 1124 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
44433ad2ant3 1129 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
4541, 44sylan9eqr 2827 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐴, 𝐵})
46 oveq2 6801 . . . . . 6 (𝑣 = 𝐶 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐶))
4746eleq2d 2836 . . . . 5 (𝑣 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
4847adantl 467 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
4945, 48raleqbidv 3301 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
50 simp1 1130 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐴𝑋)
51503ad2ant1 1127 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐴𝑋)
52 simp2 1131 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐵𝑌)
53523ad2ant1 1127 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐵𝑌)
54 simp3 1132 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶𝑍)
55543ad2ant1 1127 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐶𝑍)
5620, 39, 49, 51, 53, 55raltpd 4449 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶))))
57 eleq1 2838 . . . . . . 7 (𝑛 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
58 eleq1 2838 . . . . . . 7 (𝑛 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
5957, 58ralprg 4371 . . . . . 6 ((𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
60593adant1 1124 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
61 eleq1 2838 . . . . . . . 8 (𝑛 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐵)))
62 eleq1 2838 . . . . . . . 8 (𝑛 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)))
6361, 62ralprg 4371 . . . . . . 7 ((𝐶𝑍𝐴𝑋) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
6463ancoms 455 . . . . . 6 ((𝐴𝑋𝐶𝑍) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
65643adant2 1125 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
66 eleq1 2838 . . . . . . 7 (𝑛 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)))
67 eleq1 2838 . . . . . . 7 (𝑛 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
6866, 67ralprg 4371 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
69683adant3 1126 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
7060, 65, 693anbi123d 1547 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
71703ad2ant1 1127 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
72 3an6 1557 . . . 4 (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
7372a1i 11 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
74 nbgrsym 26486 . . . . . . 7 (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))
75 nbgrsym 26486 . . . . . . 7 (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))
76 nbgrsym 26486 . . . . . . 7 (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))
7774, 75, 763anbi123i 1158 . . . . . 6 ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
7877a1i 11 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
7978anbi1d 615 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
80 3anrot 1086 . . . . . . . 8 ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
8180bicomi 214 . . . . . . 7 ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8281anbi1i 610 . . . . . 6 (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
83 anidm 554 . . . . . 6 (((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8482, 83bitri 264 . . . . 5 (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8584a1i 11 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
86 tpid3g 4441 . . . . . . . . 9 (𝐴𝑋𝐴 ∈ {𝐵, 𝐶, 𝐴})
8786, 7syl6eleqr 2861 . . . . . . . 8 (𝐴𝑋𝐴 ∈ {𝐴, 𝐵, 𝐶})
88 tpid3g 4441 . . . . . . . . 9 (𝐵𝑌𝐵 ∈ {𝐶, 𝐴, 𝐵})
8988, 24syl6eleqr 2861 . . . . . . . 8 (𝐵𝑌𝐵 ∈ {𝐴, 𝐵, 𝐶})
90 tpid3g 4441 . . . . . . . 8 (𝐶𝑍𝐶 ∈ {𝐴, 𝐵, 𝐶})
9187, 89, 903anim123i 1154 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
92 df-3an 1073 . . . . . . 7 ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ↔ ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
9391, 92sylib 208 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
94 simplr 752 . . . . . . . . . . 11 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
9594anim1i 602 . . . . . . . . . 10 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ UPGraph))
9695ancomd 453 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
97963adant3 1126 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
98 simpll 750 . . . . . . . . 9 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐴 ∈ {𝐴, 𝐵, 𝐶})
99 simp1 1130 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐵)
10098, 99anim12i 600 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵))
101 cplgr3v.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
1022, 101nbupgrel 26464 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵)) → (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ↔ {𝐴, 𝐵} ∈ 𝐸))
10397, 100, 1023imp3i2an 1436 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ↔ {𝐴, 𝐵} ∈ 𝐸))
104 simpr 471 . . . . . . . . . . 11 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
105104anim1i 602 . . . . . . . . . 10 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ UPGraph))
106105ancomd 453 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
1071063adant3 1126 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
108 simp3 1132 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
10994, 108anim12i 600 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶))
1102, 101nbupgrel 26464 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶)) → (𝐵 ∈ (𝐺 NeighbVtx 𝐶) ↔ {𝐵, 𝐶} ∈ 𝐸))
111107, 109, 1103imp3i2an 1436 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ (𝐺 NeighbVtx 𝐶) ↔ {𝐵, 𝐶} ∈ 𝐸))
11298anim1i 602 . . . . . . . . . 10 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ UPGraph))
113112ancomd 453 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}))
1141133adant3 1126 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}))
115 simp2 1131 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐶)
116115necomd 2998 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
117104, 116anim12i 600 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴))
1182, 101nbupgrel 26464 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴)) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
119114, 117, 1183imp3i2an 1436 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
120103, 111, 1193anbi123d 1547 . . . . . 6 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
12193, 120syl3an1 1166 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
12280, 121syl5bb 272 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
12379, 85, 1223bitrd 294 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
12471, 73, 1233bitrd 294 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
1254, 56, 1243bitrd 294 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061   ∖ cdif 3720  {csn 4316  {cpr 4318  {ctp 4320  ‘cfv 6031  (class class class)co 6793  Vtxcvtx 26095  Edgcedg 26160  UPGraphcupgr 26196   NeighbVtx cnbgr 26447  ComplGraphccplgr 26539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-fz 12534  df-hash 13322  df-edg 26161  df-upgr 26198  df-nbgr 26448  df-uvtx 26511  df-cplgr 26541 This theorem is referenced by:  cusgr3vnbpr  26567
 Copyright terms: Public domain W3C validator