![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplem2 | Structured version Visualization version GIF version |
Description: -Lemma for the Collection Principle cp 8915. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
cplem2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cplem2 | ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2748 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
2 | eqid 2748 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
3 | 1, 2 | cplem1 8913 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅) |
4 | cplem2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | scottex 8909 | . . . 4 ⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V | |
6 | 4, 5 | iunex 7300 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V |
7 | nfiu1 4690 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
8 | 7 | nfeq2 2906 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} |
9 | ineq2 3939 | . . . . . 6 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (𝐵 ∩ 𝑦) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)})) | |
10 | 9 | neeq1d 2979 | . . . . 5 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ∩ 𝑦) ≠ ∅ ↔ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)) |
11 | 10 | imbi2d 329 | . . . 4 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) ↔ (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))) |
12 | 8, 11 | ralbid 3109 | . . 3 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))) |
13 | 6, 12 | spcev 3428 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅) → ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅)) |
14 | 3, 13 | ax-mp 5 | 1 ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∃wex 1841 ∈ wcel 2127 ≠ wne 2920 ∀wral 3038 {crab 3042 Vcvv 3328 ∩ cin 3702 ⊆ wss 3703 ∅c0 4046 ∪ ciun 4660 ‘cfv 6037 rankcrnk 8787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-reg 8650 ax-inf2 8699 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-om 7219 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-r1 8788 df-rank 8789 |
This theorem is referenced by: cp 8915 |
Copyright terms: Public domain | W3C validator |