MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubdir Structured version   Visualization version   GIF version

Theorem cphsubdir 23179
Description: Distributive law for inner product subtraction. Complex version of ipsubdir 20160. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphsubdir.m = (-g𝑊)
Assertion
Ref Expression
cphsubdir ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶) − (𝐵 , 𝐶)))

Proof of Theorem cphsubdir
StepHypRef Expression
1 cphphl 23142 . . 3 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 eqid 2748 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 cphipcj.h . . . 4 , = (·𝑖𝑊)
4 cphipcj.v . . . 4 𝑉 = (Base‘𝑊)
5 cphsubdir.m . . . 4 = (-g𝑊)
6 eqid 2748 . . . 4 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
72, 3, 4, 5, 6ipsubdir 20160 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)(-g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
81, 7sylan 489 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)(-g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
9 cphclm 23160 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
109adantr 472 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ ℂMod)
111adantr 472 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
12 simpr1 1210 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
13 simpr3 1214 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
14 eqid 2748 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
152, 3, 4, 14ipcl 20151 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
1611, 12, 13, 15syl3anc 1463 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
17 simpr2 1212 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
182, 3, 4, 14ipcl 20151 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
1911, 17, 13, 18syl3anc 1463 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊)))
202, 14clmsub 23051 . . 3 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐶) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝐵 , 𝐶) ∈ (Base‘(Scalar‘𝑊))) → ((𝐴 , 𝐶) − (𝐵 , 𝐶)) = ((𝐴 , 𝐶)(-g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
2110, 16, 19, 20syl3anc 1463 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , 𝐶) − (𝐵 , 𝐶)) = ((𝐴 , 𝐶)(-g‘(Scalar‘𝑊))(𝐵 , 𝐶)))
228, 21eqtr4d 2785 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶) − (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  cfv 6037  (class class class)co 6801  cmin 10429  Basecbs 16030  Scalarcsca 16117  ·𝑖cip 16119  -gcsg 17596  PreHilcphl 20142  ℂModcclm 23033  ℂPreHilccph 23137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-fz 12491  df-seq 12967  df-exp 13026  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-0g 16275  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-sbg 17599  df-subg 17763  df-ghm 17830  df-cmn 18366  df-mgp 18661  df-ur 18673  df-ring 18720  df-cring 18721  df-oppr 18794  df-dvdsr 18812  df-unit 18813  df-drng 18922  df-subrg 18951  df-lmod 19038  df-lmhm 19195  df-lvec 19276  df-sra 19345  df-rgmod 19346  df-cnfld 19920  df-phl 20144  df-nlm 22563  df-clm 23034  df-cph 23139
This theorem is referenced by:  ipcnlem2  23214  pjthlem1  23379
  Copyright terms: Public domain W3C validator