![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphabscl | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphabscl | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphsca.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | cphsca.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
3 | 1, 2 | cphsubrg 23178 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
4 | cnfldbas 19950 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
5 | 4 | subrgss 18981 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ) |
7 | 6 | sselda 3742 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ ℂ) |
8 | absval 14175 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
10 | simpl 474 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 𝑊 ∈ ℂPreHil) | |
11 | 3 | adantr 472 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 𝐾 ∈ (SubRing‘ℂfld)) |
12 | simpr 479 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) | |
13 | 1, 2 | cphcjcl 23181 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (∗‘𝐴) ∈ 𝐾) |
14 | cnfldmul 19952 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
15 | 14 | subrgmcl 18992 | . . . 4 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ 𝐾 ∧ (∗‘𝐴) ∈ 𝐾) → (𝐴 · (∗‘𝐴)) ∈ 𝐾) |
16 | 11, 12, 13, 15 | syl3anc 1477 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (𝐴 · (∗‘𝐴)) ∈ 𝐾) |
17 | 7 | cjmulrcld 14143 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (𝐴 · (∗‘𝐴)) ∈ ℝ) |
18 | 7 | cjmulge0d 14145 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 0 ≤ (𝐴 · (∗‘𝐴))) |
19 | 1, 2 | cphsqrtcl 23182 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ ((𝐴 · (∗‘𝐴)) ∈ 𝐾 ∧ (𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴)))) → (√‘(𝐴 · (∗‘𝐴))) ∈ 𝐾) |
20 | 10, 16, 17, 18, 19 | syl13anc 1479 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (√‘(𝐴 · (∗‘𝐴))) ∈ 𝐾) |
21 | 9, 20 | eqeltrd 2837 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ⊆ wss 3713 class class class wbr 4802 ‘cfv 6047 (class class class)co 6811 ℂcc 10124 ℝcr 10125 0cc0 10126 · cmul 10131 ≤ cle 10265 ∗ccj 14033 √csqrt 14170 abscabs 14171 Basecbs 16057 Scalarcsca 16144 SubRingcsubrg 18976 ℂfldccnfld 19946 ℂPreHilccph 23164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-pre-sup 10204 ax-addf 10205 ax-mulf 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-tpos 7519 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-map 8023 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-sup 8511 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-div 10875 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-n0 11483 df-z 11568 df-dec 11684 df-uz 11878 df-rp 12024 df-ico 12372 df-fz 12518 df-seq 12994 df-exp 13053 df-cj 14036 df-re 14037 df-im 14038 df-sqrt 14172 df-abs 14173 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16154 df-mulr 16155 df-starv 16156 df-tset 16160 df-ple 16161 df-ds 16164 df-unif 16165 df-0g 16302 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-mhm 17534 df-grp 17624 df-subg 17790 df-ghm 17857 df-cmn 18393 df-mgp 18688 df-ur 18700 df-ring 18747 df-cring 18748 df-oppr 18821 df-dvdsr 18839 df-unit 18840 df-rnghom 18915 df-drng 18949 df-subrg 18978 df-staf 19045 df-srng 19046 df-lvec 19303 df-cnfld 19947 df-phl 20171 df-cph 23166 |
This theorem is referenced by: cphsqrtcl2 23184 |
Copyright terms: Public domain | W3C validator |