![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossssid4 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
Ref | Expression |
---|---|
cossssid4 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid3 34534 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
2 | breq2 4800 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢𝑅𝑥 ↔ 𝑢𝑅𝑦)) | |
3 | 2 | mo4 2647 | . . 3 ⊢ (∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
4 | 3 | albii 1888 | . 2 ⊢ (∀𝑢∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
5 | 1, 4 | bitr4i 267 | 1 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1622 = wceq 1624 ∃*wmo 2600 ⊆ wss 3707 class class class wbr 4796 I cid 5165 ≀ ccoss 34288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-id 5166 df-coss 34484 |
This theorem is referenced by: cossssid5 34536 cosscnvssid4 34542 cosselcnvrefrels4 34601 |
Copyright terms: Public domain | W3C validator |