Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossid Structured version   Visualization version   GIF version

Theorem cossid 34553
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.)
Assertion
Ref Expression
cossid ≀ I = I

Proof of Theorem cossid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equvinv 2112 . . . 4 (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦𝑥 = 𝑧))
2 ideqg 5429 . . . . . . 7 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 34309 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
4 ideqg 5429 . . . . . . 7 (𝑧 ∈ V → (𝑥 I 𝑧𝑥 = 𝑧))
54elv 34309 . . . . . 6 (𝑥 I 𝑧𝑥 = 𝑧)
63, 5anbi12i 735 . . . . 5 ((𝑥 I 𝑦𝑥 I 𝑧) ↔ (𝑥 = 𝑦𝑥 = 𝑧))
76exbii 1923 . . . 4 (∃𝑥(𝑥 I 𝑦𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦𝑥 = 𝑧))
81, 7bitr4i 267 . . 3 (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧))
98opabbii 4869 . 2 {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧)}
10 dfid3 5175 . 2 I = {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧}
11 df-coss 34492 . 2 ≀ I = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧)}
129, 10, 113eqtr4ri 2793 1 ≀ I = I
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wex 1853  Vcvv 3340   class class class wbr 4804  {copab 4864   I cid 5173  ccoss 34296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-coss 34492
This theorem is referenced by:  cosscnvid  34554
  Copyright terms: Public domain W3C validator