![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvssid3 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
Ref | Expression |
---|---|
cosscnvssid3 | ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid3 34554 | . 2 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
2 | alrot3 2193 | . 2 ⊢ (∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
3 | brcnvg 5441 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
4 | 3 | el2v 34322 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
5 | brcnvg 5441 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑣 ∈ V) → (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥)) | |
6 | 5 | el2v 34322 | . . . . 5 ⊢ (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥) |
7 | 4, 6 | anbi12i 604 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) ↔ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) |
8 | 7 | imbi1i 338 | . . 3 ⊢ (((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
9 | 8 | 3albii 34349 | . 2 ⊢ (∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
10 | 1, 2, 9 | 3bitri 286 | 1 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1628 = wceq 1630 Vcvv 3349 ⊆ wss 3721 class class class wbr 4784 I cid 5156 ◡ccnv 5248 ≀ ccoss 34308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-id 5157 df-cnv 5257 df-coss 34504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |