![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coss0 | Structured version Visualization version GIF version |
Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
Ref | Expression |
---|---|
coss0 | ⊢ ≀ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss2 34494 | . 2 ⊢ ≀ ∅ = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} | |
2 | ec0 34454 | . . . . . . 7 ⊢ [𝑥]∅ = ∅ | |
3 | 2 | eleq2i 2831 | . . . . . 6 ⊢ (𝑦 ∈ [𝑥]∅ ↔ 𝑦 ∈ ∅) |
4 | 2 | eleq2i 2831 | . . . . . 6 ⊢ (𝑧 ∈ [𝑥]∅ ↔ 𝑧 ∈ ∅) |
5 | 3, 4 | anbi12i 735 | . . . . 5 ⊢ ((𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
6 | 5 | exbii 1923 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ ∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
7 | 19.9v 2062 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) | |
8 | 6, 7 | bitri 264 | . . 3 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
9 | 8 | opabbii 4869 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} |
10 | prnzg 4454 | . . . . . 6 ⊢ (𝑦 ∈ V → {𝑦, 𝑧} ≠ ∅) | |
11 | 10 | elv 34309 | . . . . 5 ⊢ {𝑦, 𝑧} ≠ ∅ |
12 | ss0b 4116 | . . . . 5 ⊢ ({𝑦, 𝑧} ⊆ ∅ ↔ {𝑦, 𝑧} = ∅) | |
13 | 11, 12 | nemtbir 3027 | . . . 4 ⊢ ¬ {𝑦, 𝑧} ⊆ ∅ |
14 | prssg 4495 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅)) | |
15 | 14 | el2v 34310 | . . . 4 ⊢ ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅) |
16 | 13, 15 | mtbir 312 | . . 3 ⊢ ¬ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) |
17 | 16 | opabf 34453 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} = ∅ |
18 | 1, 9, 17 | 3eqtri 2786 | 1 ⊢ ≀ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ⊆ wss 3715 ∅c0 4058 {cpr 4323 {copab 4864 [cec 7909 ≀ ccoss 34296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ec 7913 df-coss 34492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |