![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cosneg | Structured version Visualization version GIF version |
Description: The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
Ref | Expression |
---|---|
cosneg | ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10207 | . . . . . . . 8 ⊢ i ∈ ℂ | |
2 | mulneg12 10680 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴)) | |
3 | 1, 2 | mpan 708 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴)) |
4 | 3 | eqcomd 2766 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴)) |
5 | 4 | fveq2d 6357 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴))) |
6 | mul2neg 10681 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴)) | |
7 | 1, 6 | mpan 708 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴)) |
8 | 7 | fveq2d 6357 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴))) |
9 | 5, 8 | oveq12d 6832 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) + (exp‘(i · 𝐴)))) |
10 | negicn 10494 | . . . . . . 7 ⊢ -i ∈ ℂ | |
11 | mulcl 10232 | . . . . . . 7 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
12 | 10, 11 | mpan 708 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
13 | efcl 15032 | . . . . . 6 ⊢ ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) |
15 | mulcl 10232 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
16 | 1, 15 | mpan 708 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
17 | efcl 15032 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) |
19 | 14, 18 | addcomd 10450 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(-i · 𝐴)) + (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) |
20 | 9, 19 | eqtrd 2794 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) |
21 | 20 | oveq1d 6829 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
22 | negcl 10493 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
23 | cosval 15072 | . . 3 ⊢ (-𝐴 ∈ ℂ → (cos‘-𝐴) = (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2)) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2)) |
25 | cosval 15072 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | |
26 | 21, 24, 25 | 3eqtr4d 2804 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 ici 10150 + caddc 10151 · cmul 10153 -cneg 10479 / cdiv 10896 2c2 11282 expce 15011 cosccos 15014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-ico 12394 df-fz 12540 df-fzo 12680 df-fl 12807 df-seq 13016 df-exp 13075 df-fac 13275 df-hash 13332 df-shft 14026 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-limsup 14421 df-clim 14438 df-rlim 14439 df-sum 14636 df-ef 15017 df-cos 15020 |
This theorem is referenced by: tanneg 15097 efmival 15102 sinsub 15117 cossub 15118 sincossq 15125 cosneghalfpi 24442 cos2pim 24458 ptolemy 24468 coseq0negpitopi 24475 tanord 24504 argregt0 24576 argrege0 24577 atantan 24870 |
Copyright terms: Public domain | W3C validator |