Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coskpi2 Structured version   Visualization version   GIF version

Theorem coskpi2 40580
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
coskpi2 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem coskpi2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 11601 . . . . 5 2 ∈ ℤ
2 divides 15184 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
31, 2mpan 708 . . . 4 (𝐾 ∈ ℤ → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
43biimpa 502 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
5 zcn 11574 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
6 2cnd 11285 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 2 ∈ ℂ)
7 picn 24410 . . . . . . . . . . . . . . 15 π ∈ ℂ
87a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → π ∈ ℂ)
95, 6, 8mulassd 10255 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · 2) · π) = (𝑛 · (2 · π)))
109eqcomd 2766 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
1110adantr 472 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
12 oveq1 6820 . . . . . . . . . . . 12 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · π) = (𝐾 · π))
1312adantl 473 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · π) = (𝐾 · π))
1411, 13eqtr2d 2795 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · π) = (𝑛 · (2 · π)))
1514fveq2d 6356 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(𝑛 · (2 · π))))
16 cos2kpi 24435 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(𝑛 · (2 · π))) = 1)
1716adantr 472 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝑛 · (2 · π))) = 1)
1815, 17eqtrd 2794 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
19183adant1 1125 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
20 iftrue 4236 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
2120eqcomd 2766 . . . . . . . 8 (2 ∥ 𝐾 → 1 = if(2 ∥ 𝐾, 1, -1))
22213ad2ant1 1128 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → 1 = if(2 ∥ 𝐾, 1, -1))
2319, 22eqtrd 2794 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
24233exp 1113 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2524adantl 473 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2625rexlimdv 3168 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
274, 26mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
28 odd2np1 15267 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
2928biimpa 502 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
306, 5mulcld 10252 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
31 1cnd 10248 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 1 ∈ ℂ)
3230, 31, 8adddird 10257 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · π) = (((2 · 𝑛) · π) + (1 · π)))
336, 5mulcomd 10253 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
3433oveq1d 6828 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = ((𝑛 · 2) · π))
3534, 9eqtrd 2794 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = (𝑛 · (2 · π)))
367mulid2i 10235 . . . . . . . . . . . . . . 15 (1 · π) = π
3736a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (1 · π) = π)
3835, 37oveq12d 6831 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) · π) + (1 · π)) = ((𝑛 · (2 · π)) + π))
39 2cn 11283 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
4039, 7mulcli 10237 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
4140a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · π) ∈ ℂ)
425, 41mulcld 10252 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) ∈ ℂ)
4342, 8addcomd 10430 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · (2 · π)) + π) = (π + (𝑛 · (2 · π))))
4432, 38, 433eqtrrd 2799 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
4544adantr 472 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
46 oveq1 6820 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4746adantl 473 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4845, 47eqtr2d 2795 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · π) = (π + (𝑛 · (2 · π))))
4948fveq2d 6356 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(π + (𝑛 · (2 · π)))))
50 cosper 24433 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑛 ∈ ℤ) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
517, 50mpan 708 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
5251adantr 472 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
53 cospi 24423 . . . . . . . . . 10 (cos‘π) = -1
5453a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘π) = -1)
5549, 52, 543eqtrd 2798 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
56553adant1 1125 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
57 iffalse 4239 . . . . . . . . 9 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
5857eqcomd 2766 . . . . . . . 8 (¬ 2 ∥ 𝐾 → -1 = if(2 ∥ 𝐾, 1, -1))
59583ad2ant1 1128 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → -1 = if(2 ∥ 𝐾, 1, -1))
6056, 59eqtrd 2794 . . . . . 6 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
61603exp 1113 . . . . 5 (¬ 2 ∥ 𝐾 → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6261adantl 473 . . . 4 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6362rexlimdv 3168 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
6429, 63mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
6527, 64pm2.61dan 867 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wrex 3051  ifcif 4230   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  1c1 10129   + caddc 10131   · cmul 10133  -cneg 10459  2c2 11262  cz 11569  cosccos 14994  πcpi 14996  cdvds 15182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830
This theorem is referenced by:  sqwvfourb  40949
  Copyright terms: Public domain W3C validator