MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosadd Structured version   Visualization version   GIF version

Theorem cosadd 15090
Description: Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cosadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))

Proof of Theorem cosadd
StepHypRef Expression
1 addcl 10206 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
2 cosval 15048 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (cos‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2))
31, 2syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2))
4 coscl 15052 . . . . . . . 8 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
54adantr 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐴) ∈ ℂ)
6 coscl 15052 . . . . . . . 8 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
76adantl 473 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐵) ∈ ℂ)
85, 7mulcld 10248 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
9 ax-icn 10183 . . . . . . . 8 i ∈ ℂ
10 sincl 15051 . . . . . . . . 9 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
1110adantl 473 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐵) ∈ ℂ)
12 mulcl 10208 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
139, 11, 12sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
14 sincl 15051 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
1514adantr 472 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐴) ∈ ℂ)
16 mulcl 10208 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
179, 15, 16sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
1813, 17mulcld 10248 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) ∈ ℂ)
198, 18addcld 10247 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ)
205, 13mulcld 10248 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘𝐵))) ∈ ℂ)
217, 17mulcld 10248 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) · (i · (sin‘𝐴))) ∈ ℂ)
2220, 21addcld 10247 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) ∈ ℂ)
2319, 22, 19ppncand 10620 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) + ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
24 adddi 10213 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
259, 24mp3an1 1556 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
2625fveq2d 6352 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = (exp‘((i · 𝐴) + (i · 𝐵))))
27 simpl 474 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
28 mulcl 10208 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
299, 27, 28sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
30 simpr 479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
31 mulcl 10208 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
329, 30, 31sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
33 efadd 15019 . . . . . . 7 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
3429, 32, 33syl2anc 696 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
35 efival 15077 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
36 efival 15077 . . . . . . . 8 (𝐵 ∈ ℂ → (exp‘(i · 𝐵)) = ((cos‘𝐵) + (i · (sin‘𝐵))))
3735, 36oveqan12d 6828 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))))
385, 17, 7, 13muladdd 10677 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
3937, 38eqtrd 2790 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
4026, 34, 393eqtrd 2794 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
41 negicn 10470 . . . . . . . 8 -i ∈ ℂ
42 adddi 10213 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
4341, 42mp3an1 1556 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
4443fveq2d 6352 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = (exp‘((-i · 𝐴) + (-i · 𝐵))))
45 mulcl 10208 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
4641, 27, 45sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
47 mulcl 10208 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
4841, 30, 47sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
49 efadd 15019 . . . . . . 7 (((-i · 𝐴) ∈ ℂ ∧ (-i · 𝐵) ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
5046, 48, 49syl2anc 696 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
51 efmival 15078 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
52 efmival 15078 . . . . . . . 8 (𝐵 ∈ ℂ → (exp‘(-i · 𝐵)) = ((cos‘𝐵) − (i · (sin‘𝐵))))
5351, 52oveqan12d 6828 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))))
545, 17, 7, 13mulsubd 10678 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5553, 54eqtrd 2790 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5644, 50, 553eqtrd 2794 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5740, 56oveq12d 6827 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) = (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) + ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))))
58192timesd 11463 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
5923, 57, 583eqtr4d 2800 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) = (2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
6059oveq1d 6824 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2) = ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2))
61 2cn 11279 . . . . 5 2 ∈ ℂ
62 2ne0 11301 . . . . 5 2 ≠ 0
63 divcan3 10899 . . . . 5 (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
6461, 62, 63mp3an23 1561 . . . 4 ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
6519, 64syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
669a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
6766, 11, 66, 15mul4d 10436 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) = ((i · i) · ((sin‘𝐵) · (sin‘𝐴))))
68 ixi 10844 . . . . . . 7 (i · i) = -1
6968oveq1i 6819 . . . . . 6 ((i · i) · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐵) · (sin‘𝐴)))
7011, 15mulcomd 10249 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐵) · (sin‘𝐴)) = ((sin‘𝐴) · (sin‘𝐵)))
7170oveq2d 6825 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐴) · (sin‘𝐵))))
7269, 71syl5eq 2802 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐴) · (sin‘𝐵))))
7315, 11mulcld 10248 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
7473mulm1d 10670 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((sin‘𝐴) · (sin‘𝐵))) = -((sin‘𝐴) · (sin‘𝐵)))
7567, 72, 743eqtrd 2794 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) = -((sin‘𝐴) · (sin‘𝐵)))
7675oveq2d 6825 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) = (((cos‘𝐴) · (cos‘𝐵)) + -((sin‘𝐴) · (sin‘𝐵))))
778, 73negsubd 10586 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + -((sin‘𝐴) · (sin‘𝐵))) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
7865, 76, 773eqtrd 2794 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
793, 60, 783eqtrd 2794 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1628  wcel 2135  wne 2928  cfv 6045  (class class class)co 6809  cc 10122  0cc0 10124  1c1 10125  ici 10126   + caddc 10127   · cmul 10129  cmin 10454  -cneg 10455   / cdiv 10872  2c2 11258  expce 14987  sincsin 14989  cosccos 14990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-inf 8510  df-oi 8576  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-ico 12370  df-fz 12516  df-fzo 12656  df-fl 12783  df-seq 12992  df-exp 13051  df-fac 13251  df-bc 13280  df-hash 13308  df-shft 14002  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-limsup 14397  df-clim 14414  df-rlim 14415  df-sum 14612  df-ef 14993  df-sin 14995  df-cos 14996
This theorem is referenced by:  tanaddlem  15091  tanadd  15092  cossub  15094  sinmul  15097  cosmul  15098  addcos  15099  subcos  15100  sincossq  15101  cos2t  15103  demoivreALT  15126  cosppi  24437  coshalfpip  24441
  Copyright terms: Public domain W3C validator