Step | Hyp | Ref
| Expression |
1 | | divides 15190 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) |
2 | 1 | 3adant1 1123 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) |
3 | 2 | adantr 466 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) |
4 | | simprr 748 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℤ) |
5 | | simpl2 1228 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑁 ∈ ℤ) |
6 | | zcn 11583 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
7 | | zcn 11583 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
8 | | mulcom 10223 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) |
9 | 6, 7, 8 | syl2an 575 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) |
10 | 4, 5, 9 | syl2anc 565 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) |
11 | 10 | breq2d 4796 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀 ∥ (𝑁 · 𝑥))) |
12 | | simprl 746 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1) |
13 | | simpl1 1226 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑀 ∈ ℤ) |
14 | | coprmdvds 15573 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∥ 𝑥)) |
15 | 13, 5, 4, 14 | syl3anc 1475 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∥ 𝑥)) |
16 | 12, 15 | mpan2d 666 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑁 · 𝑥) → 𝑀 ∥ 𝑥)) |
17 | 11, 16 | sylbid 230 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → 𝑀 ∥ 𝑥)) |
18 | | dvdsmulc 15217 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) |
19 | 13, 4, 5, 18 | syl3anc 1475 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ 𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) |
20 | 17, 19 | syld 47 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) |
21 | | breq2 4788 |
. . . . . . . 8
⊢ ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀 ∥ 𝐾)) |
22 | | breq2 4788 |
. . . . . . . 8
⊢ ((𝑥 · 𝑁) = 𝐾 → ((𝑀 · 𝑁) ∥ (𝑥 · 𝑁) ↔ (𝑀 · 𝑁) ∥ 𝐾)) |
23 | 21, 22 | imbi12d 333 |
. . . . . . 7
⊢ ((𝑥 · 𝑁) = 𝐾 → ((𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)) ↔ (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
24 | 20, 23 | syl5ibcom 235 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
25 | 24 | anassrs 458 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
26 | 25 | rexlimdva 3178 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
27 | 3, 26 | sylbid 230 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 ∥ 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
28 | 27 | com23 86 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 ∥ 𝐾 → (𝑁 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
29 | 28 | impd 396 |
1
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 · 𝑁) ∥ 𝐾)) |