MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmdvds1 Structured version   Visualization version   GIF version

Theorem coprmdvds1 15412
Description: If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.)
Assertion
Ref Expression
coprmdvds1 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))

Proof of Theorem coprmdvds1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 coprmgcdb 15409 . . 3 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) ↔ (𝐹 gcd 𝐺) = 1))
2 breq1 4688 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝐹𝐼𝐹))
3 breq1 4688 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝐺𝐼𝐺))
42, 3anbi12d 747 . . . . . . . 8 (𝑖 = 𝐼 → ((𝑖𝐹𝑖𝐺) ↔ (𝐼𝐹𝐼𝐺)))
5 eqeq1 2655 . . . . . . . 8 (𝑖 = 𝐼 → (𝑖 = 1 ↔ 𝐼 = 1))
64, 5imbi12d 333 . . . . . . 7 (𝑖 = 𝐼 → (((𝑖𝐹𝑖𝐺) → 𝑖 = 1) ↔ ((𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
76rspcv 3336 . . . . . 6 (𝐼 ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → ((𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
87com23 86 . . . . 5 (𝐼 ∈ ℕ → ((𝐼𝐹𝐼𝐺) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → 𝐼 = 1)))
983impib 1281 . . . 4 ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → 𝐼 = 1))
109com12 32 . . 3 (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
111, 10syl6bir 244 . 2 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → ((𝐹 gcd 𝐺) = 1 → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
12113impia 1280 1 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941   class class class wbr 4685  (class class class)co 6690  1c1 9975  cn 11058  cdvds 15027   gcd cgcd 15263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264
This theorem is referenced by:  prmdvdsfmtnof1lem2  41822
  Copyright terms: Public domain W3C validator