Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprimeprodsq2 Structured version   Visualization version   GIF version

Theorem coprimeprodsq2 15720
 Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))

Proof of Theorem coprimeprodsq2
StepHypRef Expression
1 zcn 11583 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2 nn0cn 11503 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
3 mulcom 10223 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
41, 2, 3syl2an 575 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
543adant3 1125 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
65adantr 466 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
76eqeq2d 2780 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) ↔ (𝐶↑2) = (𝐵 · 𝐴)))
8 simpl2 1228 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐵 ∈ ℕ0)
9 simpl1 1226 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐴 ∈ ℤ)
10 simpl3 1230 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℕ0)
11 nn0z 11601 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
12 gcdcom 15442 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
1312oveq1d 6807 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = ((𝐵 gcd 𝐴) gcd 𝐶))
1413eqeq1d 2772 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1))
1511, 14sylan2 572 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1))
16153adant3 1125 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) → (((𝐴 gcd 𝐵) gcd 𝐶) = 1 ↔ ((𝐵 gcd 𝐴) gcd 𝐶) = 1))
1716biimpa 462 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐵 gcd 𝐴) gcd 𝐶) = 1)
18 coprimeprodsq 15719 . . 3 (((𝐵 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐵 gcd 𝐴) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐵 · 𝐴) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))
198, 9, 10, 17, 18syl31anc 1478 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐵 · 𝐴) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))
207, 19sylbid 230 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  (class class class)co 6792  ℂcc 10135  1c1 10138   · cmul 10142  2c2 11271  ℕ0cn0 11493  ℤcz 11578  ↑cexp 13066   gcd cgcd 15423 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424 This theorem is referenced by:  pythagtriplem7  15733
 Copyright terms: Public domain W3C validator