Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  copisnmnd Structured version   Visualization version   GIF version

Theorem copisnmnd 42337
Description: A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
copisnmnd.b 𝐵 = (Base‘𝑀)
copisnmnd.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
copisnmnd.c (𝜑𝐶𝐵)
copisnmnd.n (𝜑 → 1 < (♯‘𝐵))
Assertion
Ref Expression
copisnmnd (𝜑𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem copisnmnd
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 copisnmnd.c . . 3 (𝜑𝐶𝐵)
2 copisnmnd.n . . 3 (𝜑 → 1 < (♯‘𝐵))
3 copisnmnd.b . . . . . . 7 𝐵 = (Base‘𝑀)
4 fvex 6363 . . . . . . 7 (Base‘𝑀) ∈ V
53, 4eqeltri 2835 . . . . . 6 𝐵 ∈ V
65a1i 11 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 𝐵 ∈ V)
7 simpr 479 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 1 < (♯‘𝐵))
8 simpl 474 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 𝐶𝐵)
9 hashgt12el2 13423 . . . . 5 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵) ∧ 𝐶𝐵) → ∃𝑐𝐵 𝐶𝑐)
106, 7, 8, 9syl3anc 1477 . . . 4 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → ∃𝑐𝐵 𝐶𝑐)
11 df-ne 2933 . . . . . . 7 (𝐶𝑐 ↔ ¬ 𝐶 = 𝑐)
1211rexbii 3179 . . . . . 6 (∃𝑐𝐵 𝐶𝑐 ↔ ∃𝑐𝐵 ¬ 𝐶 = 𝑐)
13 rexnal 3133 . . . . . 6 (∃𝑐𝐵 ¬ 𝐶 = 𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
1412, 13bitri 264 . . . . 5 (∃𝑐𝐵 𝐶𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
15 eqidd 2761 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
16 eqidd 2761 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
17 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑎𝐵)
1817adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
19 simpr 479 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
201adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝐶𝐵)
2120adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐶𝐵)
2215, 16, 18, 19, 21ovmpt2d 6954 . . . . . . . . . . . 12 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
2322adantr 472 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
24 simpr 479 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
2523, 24eqtr3d 2796 . . . . . . . . . 10 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → 𝐶 = 𝑐)
2625ex 449 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐𝐶 = 𝑐))
2726ralimdva 3100 . . . . . . . 8 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2827rexlimdva 3169 . . . . . . 7 (𝜑 → (∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2928con3d 148 . . . . . 6 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐))
30 rexnal 3133 . . . . . . . . 9 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3130bicomi 214 . . . . . . . 8 (¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3231ralbii 3118 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
33 ralnex 3130 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
34 df-ne 2933 . . . . . . . . . 10 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐 ↔ ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3534bicomi 214 . . . . . . . . 9 (¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3635rexbii 3179 . . . . . . . 8 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3736ralbii 3118 . . . . . . 7 (∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3832, 33, 373bitr3i 290 . . . . . 6 (¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3929, 38syl6ib 241 . . . . 5 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
4014, 39syl5bi 232 . . . 4 (𝜑 → (∃𝑐𝐵 𝐶𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
4110, 40syl5 34 . . 3 (𝜑 → ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
421, 2, 41mp2and 717 . 2 (𝜑 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
43 copisnmnd.p . . . 4 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
4443eqcomi 2769 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
453, 44isnmnd 17519 . 2 (∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐𝑀 ∉ Mnd)
4642, 45syl 17 1 (𝜑𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wnel 3035  wral 3050  wrex 3051  Vcvv 3340   class class class wbr 4804  cfv 6049  (class class class)co 6814  cmpt2 6816  1c1 10149   < clt 10286  chash 13331  Basecbs 16079  +gcplusg 16163  Mndcmnd 17515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332  df-mnd 17516
This theorem is referenced by:  cznnring  42484
  Copyright terms: Public domain W3C validator