![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > conntop | Structured version Visualization version GIF version |
Description: A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
Ref | Expression |
---|---|
conntop | ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2761 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | isconn 21439 | . 2 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, ∪ 𝐽})) |
3 | 2 | simplbi 478 | 1 ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ∩ cin 3715 ∅c0 4059 {cpr 4324 ∪ cuni 4589 ‘cfv 6050 Topctop 20921 Clsdccld 21043 Conncconn 21437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-iota 6013 df-fv 6058 df-conn 21438 |
This theorem is referenced by: conncompss 21459 txconn 21715 qtopconn 21735 ufildr 21957 connpconn 31546 cvmliftmolem1 31592 cvmliftmolem2 31593 ordtopconn 32766 |
Copyright terms: Public domain | W3C validator |