![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version |
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 149 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | con4 112 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 199 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: mtt 353 pm4.14 601 dfbi3 1018 19.23t 2117 19.23tOLD 2254 r19.23v 3052 raldifsni 4357 dff14a 6567 weniso 6644 dfom2 7109 dfsup2 8391 wemapsolem 8496 pwfseqlem3 9520 indstr 11794 rpnnen2lem12 14998 algcvgblem 15337 isirred2 18747 isdomn2 19347 ist0-3 21197 mdegleb 23869 dchrelbas4 25013 toslublem 29795 tosglblem 29797 poimirlem25 33564 poimirlem30 33569 tsbi3 34072 isdomn3 38099 ntrneikb 38709 conss34OLD 38963 aacllem 42875 |
Copyright terms: Public domain | W3C validator |