![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3 | Structured version Visualization version GIF version |
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. Its associated inference is con3i 150. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.) |
Ref | Expression |
---|---|
con3 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | con3d 148 | 1 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.65 184 con34b 305 nic-ax 1638 nic-axALT 1639 axc10 2288 rexim 3037 ralf0OLD 4112 falseral0 4114 dfon2lem9 31820 hbntg 31835 naim1 32509 naim2 32510 lukshef-ax2 32539 bj-axc10v 32842 ax12indn 34547 cvrexchlem 35023 cvratlem 35025 axfrege28 38440 vk15.4j 39051 tratrb 39063 hbntal 39086 tratrbVD 39411 con5VD 39450 vk15.4jVD 39464 nrhmzr 42198 |
Copyright terms: Public domain | W3C validator |