![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2b | Structured version Visualization version GIF version |
Description: Contraposition. Bidirectional version of con2 130. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2b | ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2 130 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
2 | con2 130 | . 2 ⊢ ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓)) | |
3 | 1, 2 | impbii 199 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: mt2bi 352 pm4.15 604 nic-ax 1638 nic-axALT 1639 alimex 1798 ssconb 3776 disjsn 4278 oneqmini 5814 kmlem4 9013 isprm3 15443 bnj1171 31194 bnj1176 31199 bnj1204 31206 bnj1388 31227 bnj1523 31265 wl-nancom 33427 dfxor5 38376 pm13.196a 38932 |
Copyright terms: Public domain | W3C validator |