![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > compsscnvlem | Structured version Visualization version GIF version |
Description: Lemma for compsscnv 9231. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compsscnvlem | ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 476 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 = (𝐴 ∖ 𝑥)) | |
2 | difss 3770 | . . . 4 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
3 | 1, 2 | syl6eqss 3688 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 ⊆ 𝐴) |
4 | selpw 4198 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
5 | 3, 4 | sylibr 224 | . 2 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 ∈ 𝒫 𝐴) |
6 | 1 | difeq2d 3761 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝐴 ∖ 𝑦) = (𝐴 ∖ (𝐴 ∖ 𝑥))) |
7 | elpwi 4201 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑥 ⊆ 𝐴) |
9 | dfss4 3891 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) | |
10 | 8, 9 | sylib 208 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) |
11 | 6, 10 | eqtr2d 2686 | . 2 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑥 = (𝐴 ∖ 𝑦)) |
12 | 5, 11 | jca 553 | 1 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ⊆ wss 3607 𝒫 cpw 4191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-pw 4193 |
This theorem is referenced by: compsscnv 9231 |
Copyright terms: Public domain | W3C validator |