![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > compsscnv | Structured version Visualization version GIF version |
Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
compsscnv | ⊢ ◡𝐹 = 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvopab 5568 | . 2 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} | |
2 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
3 | difeq2 3755 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
4 | 3 | cbvmptv 4783 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
5 | df-mpt 4763 | . . . 4 ⊢ (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} | |
6 | 2, 4, 5 | 3eqtri 2677 | . . 3 ⊢ 𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
7 | 6 | cnveqi 5329 | . 2 ⊢ ◡𝐹 = ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
8 | df-mpt 4763 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))} | |
9 | compsscnvlem 9230 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦)) → (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))) | |
10 | compsscnvlem 9230 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) | |
11 | 9, 10 | impbii 199 | . . . 4 ⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))) |
12 | 11 | opabbii 4750 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))} |
13 | 8, 2, 12 | 3eqtr4i 2683 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
14 | 1, 7, 13 | 3eqtr4i 2683 | 1 ⊢ ◡𝐹 = 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 𝒫 cpw 4191 {copab 4745 ↦ cmpt 4762 ◡ccnv 5142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-mpt 4763 df-xp 5149 df-rel 5150 df-cnv 5151 |
This theorem is referenced by: compssiso 9234 isf34lem3 9235 compss 9236 isf34lem5 9238 |
Copyright terms: Public domain | W3C validator |