![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > compne | Structured version Visualization version GIF version |
Description: The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.) |
Ref | Expression |
---|---|
compne | ⊢ (V ∖ 𝐴) ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vn0 3957 | . 2 ⊢ V ≠ ∅ | |
2 | id 22 | . . . . . . 7 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = 𝐴) | |
3 | difeq1 3754 | . . . . . . . 8 ⊢ ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∖ 𝐴) = (𝐴 ∖ 𝐴)) | |
4 | difabs 3925 | . . . . . . . 8 ⊢ ((V ∖ 𝐴) ∖ 𝐴) = (V ∖ 𝐴) | |
5 | difid 3981 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
6 | 3, 4, 5 | 3eqtr3g 2708 | . . . . . . 7 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = ∅) |
7 | 2, 6 | eqtr3d 2687 | . . . . . 6 ⊢ ((V ∖ 𝐴) = 𝐴 → 𝐴 = ∅) |
8 | 7 | difeq2d 3761 | . . . . 5 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = (V ∖ ∅)) |
9 | dif0 3983 | . . . . 5 ⊢ (V ∖ ∅) = V | |
10 | 8, 9 | syl6eq 2701 | . . . 4 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = V) |
11 | 10, 6 | eqtr3d 2687 | . . 3 ⊢ ((V ∖ 𝐴) = 𝐴 → V = ∅) |
12 | 11 | necon3i 2855 | . 2 ⊢ (V ≠ ∅ → (V ∖ 𝐴) ≠ 𝐴) |
13 | 1, 12 | ax-mp 5 | 1 ⊢ (V ∖ 𝐴) ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ≠ wne 2823 Vcvv 3231 ∖ cdif 3604 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |