![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coltr3 | Structured version Visualization version GIF version |
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
coltr3.2 | ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
coltr3 | ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2771 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | tglineintmo.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglineintmo.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
6 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
8 | coltr.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ 𝑃) |
10 | coltr3.2 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) | |
11 | 10 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶)) |
12 | simpr 471 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
13 | 12 | oveq2d 6809 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶)) |
14 | 11, 13 | eleqtrrd 2853 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐴)) |
15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 25586 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐷) |
16 | coltr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
17 | 16 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
18 | 15, 17 | eqeltrrd 2851 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶)) |
19 | tglineintmo.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
20 | 4 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
21 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
22 | coltr.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
23 | 22 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
24 | 8 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ 𝑃) |
25 | simpr 471 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
26 | 10 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶)) |
27 | 1, 3, 19, 20, 21, 23, 24, 25, 26 | btwnlng1 25735 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐴𝐿𝐶)) |
28 | 25 | necomd 2998 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐴) |
29 | coltr.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
30 | 29 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
31 | 1, 19, 3, 4, 29, 22, 16 | tglngne 25666 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
32 | 31 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
33 | 16 | adantr 466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
34 | 1, 3, 19, 20, 23, 21, 30, 28, 33, 32 | lnrot1 25739 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐿𝐴)) |
35 | 1, 3, 19, 20, 23, 21, 28, 30, 32, 34 | tglineelsb2 25748 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐶𝐿𝐴) = (𝐶𝐿𝐵)) |
36 | 1, 3, 19, 20, 21, 23, 25 | tglinecom 25751 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴𝐿𝐶) = (𝐶𝐿𝐴)) |
37 | 1, 3, 19, 4, 29, 22, 31 | tglinecom 25751 | . . . . 5 ⊢ (𝜑 → (𝐵𝐿𝐶) = (𝐶𝐿𝐵)) |
38 | 37 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐵𝐿𝐶) = (𝐶𝐿𝐵)) |
39 | 35, 36, 38 | 3eqtr4d 2815 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴𝐿𝐶) = (𝐵𝐿𝐶)) |
40 | 27, 39 | eleqtrd 2852 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶)) |
41 | 18, 40 | pm2.61dane 3030 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 distcds 16158 TarskiGcstrkg 25550 Itvcitv 25556 LineGclng 25557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-concat 13497 df-s1 13498 df-s2 13802 df-s3 13803 df-trkgc 25568 df-trkgb 25569 df-trkgcb 25570 df-trkg 25573 df-cgrg 25627 |
This theorem is referenced by: mideulem2 25847 opphllem 25848 outpasch 25868 |
Copyright terms: Public domain | W3C validator |