MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpex Structured version   Visualization version   GIF version

Theorem colperpex 25820
Description: In dimension 2 and above, on a line (𝐴𝐿𝐵) there is always a perpendicular 𝑃 from 𝐴 on a given plane (here given by 𝐶, in case 𝐶 does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpex.1 (𝜑𝐴𝑃)
colperpex.2 (𝜑𝐵𝑃)
colperpex.3 (𝜑𝐶𝑃)
colperpex.4 (𝜑𝐴𝐵)
colperpex.5 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
colperpex (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Distinct variable groups:   ,𝑝,𝑡   𝐴,𝑝,𝑡   𝐵,𝑝,𝑡   𝐶,𝑝,𝑡   𝐺,𝑝,𝑡   𝐼,𝑝,𝑡   𝐿,𝑝,𝑡   𝑃,𝑝,𝑡   𝜑,𝑝,𝑡

Proof of Theorem colperpex
Dummy variables 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
2 colperpex.d . . . . 5 = (dist‘𝐺)
3 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
5 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad3antrrr 768 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
7 colperpex.1 . . . . . 6 (𝜑𝐴𝑃)
87ad3antrrr 768 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
9 colperpex.2 . . . . . 6 (𝜑𝐵𝑃)
109ad3antrrr 768 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
11 simplr 809 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝑑𝑃)
12 colperpex.4 . . . . . 6 (𝜑𝐴𝐵)
1312ad3antrrr 768 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
14 simpr 479 . . . . 5 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ¬ 𝑑 ∈ (𝐴𝐿𝐵))
151, 2, 3, 4, 6, 8, 10, 11, 13, 14colperpexlem3 25819 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))))
16 simprl 811 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
17 colperpex.3 . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad5antr 775 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶𝑃)
19 simp-5r 831 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐴𝐿𝐵))
2019orcd 406 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
215ad5antr 775 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐺 ∈ TarskiG)
22 simplr 809 . . . . . . . . 9 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝑝𝑃)
231, 2, 3, 21, 18, 22tgbtwntriv1 25581 . . . . . . . 8 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → 𝐶 ∈ (𝐶𝐼𝑝))
24 eleq1 2823 . . . . . . . . . . 11 (𝑡 = 𝐶 → (𝑡 ∈ (𝐴𝐿𝐵) ↔ 𝐶 ∈ (𝐴𝐿𝐵)))
2524orbi1d 741 . . . . . . . . . 10 (𝑡 = 𝐶 → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))
26 eleq1 2823 . . . . . . . . . 10 (𝑡 = 𝐶 → (𝑡 ∈ (𝐶𝐼𝑝) ↔ 𝐶 ∈ (𝐶𝐼𝑝)))
2725, 26anbi12d 749 . . . . . . . . 9 (𝑡 = 𝐶 → (((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)) ↔ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))))
2827rspcev 3445 . . . . . . . 8 ((𝐶𝑃 ∧ ((𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝐶 ∈ (𝐶𝐼𝑝))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
2918, 20, 23, 28syl12anc 1475 . . . . . . 7 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))
3016, 29jca 555 . . . . . 6 ((((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝)))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
3130ex 449 . . . . 5 (((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) ∧ 𝑝𝑃) → (((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3231reximdva 3151 . . . 4 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → (∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑠 ∈ (𝑑𝐼𝑝))) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))))
3315, 32mpd 15 . . 3 ((((𝜑𝐶 ∈ (𝐴𝐿𝐵)) ∧ 𝑑𝑃) ∧ ¬ 𝑑 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
345adantr 472 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
35 colperpex.5 . . . . 5 (𝜑𝐺DimTarskiG≥2)
3635adantr 472 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
377adantr 472 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
389adantr 472 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
3912adantr 472 . . . 4 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
401, 3, 4, 34, 36, 37, 38, 39tglowdim2ln 25741 . . 3 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑑𝑃 ¬ 𝑑 ∈ (𝐴𝐿𝐵))
4133, 40r19.29a 3212 . 2 ((𝜑𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
425adantr 472 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
437adantr 472 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
449adantr 472 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
4517adantr 472 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐶𝑃)
4612adantr 472 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
47 simpr 479 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
481, 2, 3, 4, 42, 43, 44, 45, 46, 47colperpexlem3 25819 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
4941, 48pm2.61dan 867 1 (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1628  wcel 2135  wne 2928  wrex 3047   class class class wbr 4800  cfv 6045  (class class class)co 6809  2c2 11258  Basecbs 16055  distcds 16148  TarskiGcstrkg 25524  DimTarskiGcstrkgld 25528  Itvcitv 25530  LineGclng 25531  ⟂Gcperpg 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-map 8021  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-xnn0 11552  df-z 11566  df-uz 11876  df-fz 12516  df-fzo 12656  df-hash 13308  df-word 13481  df-concat 13483  df-s1 13484  df-s2 13789  df-s3 13790  df-trkgc 25542  df-trkgb 25543  df-trkgcb 25544  df-trkgld 25546  df-trkg 25547  df-cgrg 25601  df-leg 25673  df-mir 25743  df-rag 25784  df-perpg 25786
This theorem is referenced by:  midex  25824  oppperpex  25840
  Copyright terms: Public domain W3C validator