Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinrel Structured version   Visualization version   GIF version

Theorem colinrel 32470
Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinrel Rel Colinear

Proof of Theorem colinrel
Dummy variables 𝑞 𝑝 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5661 . 2 Rel {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))}
2 df-colinear 32452 . . 3 Colinear = {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))}
32releqi 5359 . 2 (Rel Colinear ↔ Rel {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))})
41, 3mpbir 221 1 Rel Colinear
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3o 1071  w3a 1072  wcel 2139  wrex 3051  cop 4327   class class class wbr 4804  ccnv 5265  Rel wrel 5271  cfv 6049  {coprab 6814  cn 11212  𝔼cee 25967   Btwn cbtwn 25968   Colinear ccolin 32450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-colinear 32452
This theorem is referenced by:  brcolinear2  32471
  Copyright terms: Public domain W3C validator