Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearperm4 Structured version   Visualization version   GIF version

Theorem colinearperm4 32449
Description: Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
colinearperm4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ 𝐶 Colinear ⟨𝐴, 𝐵⟩))

Proof of Theorem colinearperm4
StepHypRef Expression
1 colinearperm3 32447 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ 𝐵 Colinear ⟨𝐶, 𝐴⟩))
2 3anrot 1087 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
3 colinearperm3 32447 . . 3 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐵 Colinear ⟨𝐶, 𝐴⟩ ↔ 𝐶 Colinear ⟨𝐴, 𝐵⟩))
42, 3sylan2b 493 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Colinear ⟨𝐶, 𝐴⟩ ↔ 𝐶 Colinear ⟨𝐴, 𝐵⟩))
51, 4bitrd 268 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ 𝐶 Colinear ⟨𝐴, 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2127  cop 4315   class class class wbr 4792  cfv 6037  cn 11183  𝔼cee 25938   Colinear ccolin 32421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-xp 5260  df-rel 5261  df-cnv 5262  df-iota 6000  df-fv 6045  df-oprab 6805  df-colinear 32423
This theorem is referenced by:  colinearperm5  32450  btwncolinear5  32457
  Copyright terms: Public domain W3C validator