MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalglem4 Structured version   Visualization version   GIF version

Theorem colinearalglem4 25834
Description: Lemma for colinearalg 25835. Prove a disjunction that will be needed in the final proof. (Contributed by Scott Fenton, 27-Jun-2013.)
Assertion
Ref Expression
colinearalglem4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
Distinct variable groups:   𝐴,𝑖   𝐶,𝑖   𝑖,𝐾   𝑖,𝑁

Proof of Theorem colinearalglem4
StepHypRef Expression
1 relin01 10590 . . 3 (𝐾 ∈ ℝ → (𝐾 ≤ 0 ∨ (0 ≤ 𝐾𝐾 ≤ 1) ∨ 1 ≤ 𝐾))
21adantl 481 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (𝐾 ≤ 0 ∨ (0 ≤ 𝐾𝐾 ≤ 1) ∨ 1 ≤ 𝐾))
3 fveere 25826 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
43adantlr 751 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
5 fveere 25826 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
65adantll 750 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
74, 6jca 553 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
8 simprl 809 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → 𝐾 ∈ ℝ)
98recnd 10106 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → 𝐾 ∈ ℂ)
10 resubcl 10383 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℝ ∧ (𝐴𝑖) ∈ ℝ) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
1110ancoms 468 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
1211adantr 480 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
1312recnd 10106 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
149, 13, 13mulassd 10101 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) · ((𝐶𝑖) − (𝐴𝑖))) = (𝐾 · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
158, 12remulcld 10108 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
1615recnd 10106 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
17 recn 10064 . . . . . . . . . . . 12 ((𝐴𝑖) ∈ ℝ → (𝐴𝑖) ∈ ℂ)
1817ad2antrr 762 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐴𝑖) ∈ ℂ)
1916, 18pncand 10431 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) = (𝐾 · ((𝐶𝑖) − (𝐴𝑖))))
2019oveq1d 6705 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) · ((𝐶𝑖) − (𝐴𝑖))))
2113sqvald 13045 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (((𝐶𝑖) − (𝐴𝑖))↑2) = (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
2221oveq2d 6706 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)) = (𝐾 · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
2314, 20, 223eqtr4d 2695 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)))
24 simprr 811 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → 𝐾 ≤ 0)
2512sqge0d 13076 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2))
2624, 25jca 553 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 ≤ 0 ∧ 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2)))
2726orcd 406 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐾 ≤ 0 ∧ 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2)) ∨ (0 ≤ 𝐾 ∧ (((𝐶𝑖) − (𝐴𝑖))↑2) ≤ 0)))
2812resqcld 13075 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (((𝐶𝑖) − (𝐴𝑖))↑2) ∈ ℝ)
29 mulle0b 10932 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ (((𝐶𝑖) − (𝐴𝑖))↑2) ∈ ℝ) → ((𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0 ↔ ((𝐾 ≤ 0 ∧ 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2)) ∨ (0 ≤ 𝐾 ∧ (((𝐶𝑖) − (𝐴𝑖))↑2) ≤ 0))))
308, 28, 29syl2anc 694 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0 ↔ ((𝐾 ≤ 0 ∧ 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2)) ∨ (0 ≤ 𝐾 ∧ (((𝐶𝑖) − (𝐴𝑖))↑2) ≤ 0))))
3127, 30mpbird 247 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0)
3223, 31eqbrtrd 4707 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0)
337, 32sylan 487 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0)
3433an32s 863 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0)
3534ralrimiva 2995 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0)
3635expr 642 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (𝐾 ≤ 0 → ∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
37 recn 10064 . . . . . . . . . . . . 13 ((𝐶𝑖) ∈ ℝ → (𝐶𝑖) ∈ ℂ)
3837ad2antlr 763 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (𝐶𝑖) ∈ ℂ)
3917ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (𝐴𝑖) ∈ ℂ)
40 simprl 809 . . . . . . . . . . . . . 14 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 𝐾 ∈ ℝ)
4111adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
4240, 41remulcld 10108 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
4342recnd 10106 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
4438, 39, 43sub32d 10462 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐶𝑖) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) − (𝐴𝑖)))
4540recnd 10106 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 𝐾 ∈ ℂ)
4641recnd 10106 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
47 ax-1cn 10032 . . . . . . . . . . . . . 14 1 ∈ ℂ
48 subdir 10502 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) = ((1 · ((𝐶𝑖) − (𝐴𝑖))) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
4947, 48mp3an1 1451 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) = ((1 · ((𝐶𝑖) − (𝐴𝑖))) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
5045, 46, 49syl2anc 694 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) = ((1 · ((𝐶𝑖) − (𝐴𝑖))) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
5146mulid2d 10096 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (1 · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐶𝑖) − (𝐴𝑖)))
5251oveq1d 6705 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 · ((𝐶𝑖) − (𝐴𝑖))) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐶𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
5350, 52eqtr2d 2686 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))))
5438, 43, 39subsub4d 10461 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) − (𝐴𝑖)) = ((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
5544, 53, 543eqtr3rd 2694 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) = ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))))
5639, 39, 43sub32d 10462 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐴𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐴𝑖) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) − (𝐴𝑖)))
5739subidd 10418 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐴𝑖) − (𝐴𝑖)) = 0)
5857oveq1d 6705 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐴𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (0 − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
59 df-neg 10307 . . . . . . . . . . . 12 -(𝐾 · ((𝐶𝑖) − (𝐴𝑖))) = (0 − (𝐾 · ((𝐶𝑖) − (𝐴𝑖))))
6058, 59syl6eqr 2703 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐴𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = -(𝐾 · ((𝐶𝑖) − (𝐴𝑖))))
6139, 43, 39subsub4d 10461 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐴𝑖) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) − (𝐴𝑖)) = ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
6256, 60, 613eqtr3rd 2694 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) = -(𝐾 · ((𝐶𝑖) − (𝐴𝑖))))
6355, 62oveq12d 6708 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) = (((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · -(𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
64 1re 10077 . . . . . . . . . . . . . 14 1 ∈ ℝ
65 resubcl 10383 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 − 𝐾) ∈ ℝ)
6664, 65mpan 706 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (1 − 𝐾) ∈ ℝ)
6766ad2antrl 764 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (1 − 𝐾) ∈ ℝ)
6867, 41remulcld 10108 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
6968recnd 10106 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
7069, 43mulneg2d 10522 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · -(𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = -(((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
7167recnd 10106 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (1 − 𝐾) ∈ ℂ)
7271, 46, 45, 46mul4d 10286 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
7372negeqd 10313 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → -(((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = -(((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
7463, 70, 733eqtrd 2689 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) = -(((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
7567, 40remulcld 10108 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 − 𝐾) · 𝐾) ∈ ℝ)
7641resqcld 13075 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖))↑2) ∈ ℝ)
77 simpl 472 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → 𝐾 ∈ ℝ)
7864, 77, 65sylancr 696 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → (1 − 𝐾) ∈ ℝ)
79 subge0 10579 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ (1 − 𝐾) ↔ 𝐾 ≤ 1))
8064, 79mpan 706 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℝ → (0 ≤ (1 − 𝐾) ↔ 𝐾 ≤ 1))
8180biimpar 501 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝐾 ≤ 1) → 0 ≤ (1 − 𝐾))
8281adantrl 752 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → 0 ≤ (1 − 𝐾))
83 simprl 809 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → 0 ≤ 𝐾)
8478, 77, 82, 83mulge0d 10642 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → 0 ≤ ((1 − 𝐾) · 𝐾))
8584adantl 481 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 0 ≤ ((1 − 𝐾) · 𝐾))
8641sqge0d 13076 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2))
8775, 76, 85, 86mulge0d 10642 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 0 ≤ (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
8846sqvald 13045 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖))↑2) = (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
8988oveq2d 6706 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖))↑2)) = (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
9087, 89breqtrd 4711 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 0 ≤ (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
9141, 41remulcld 10108 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
9275, 91remulcld 10108 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))) ∈ ℝ)
9392le0neg2d 10638 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (0 ≤ (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ -(((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))) ≤ 0))
9490, 93mpbid 222 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → -(((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))) ≤ 0)
9574, 94eqbrtrd 4707 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0)
967, 95sylan 487 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0)
9796an32s 863 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0)
9897ralrimiva 2995 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0)
9998expr 642 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → ((0 ≤ 𝐾𝐾 ≤ 1) → ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
10037ad2antlr 763 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐶𝑖) ∈ ℂ)
10117ad2antrr 762 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐴𝑖) ∈ ℂ)
102100, 101negsubdi2d 10446 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → -((𝐶𝑖) − (𝐴𝑖)) = ((𝐴𝑖) − (𝐶𝑖)))
103102oveq1d 6705 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (-((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐴𝑖) − (𝐶𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))))
104 simplr 807 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐶𝑖) ∈ ℝ)
105 simpll 805 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐴𝑖) ∈ ℝ)
106104, 105, 10syl2anc 694 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
107106recnd 10106 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
108 peano2rem 10386 . . . . . . . . . . . . . 14 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
109108ad2antrl 764 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐾 − 1) ∈ ℝ)
110109, 106remulcld 10108 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
111110recnd 10106 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
112107, 111mulneg1d 10521 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (-((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = -(((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))))
113109recnd 10106 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐾 − 1) ∈ ℂ)
114107, 113, 107mul12d 10283 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
115107sqvald 13045 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐶𝑖) − (𝐴𝑖))↑2) = (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
116115oveq2d 6706 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) = ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
117114, 116eqtr4d 2688 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
118117negeqd 10313 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → -(((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
119112, 118eqtrd 2685 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (-((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
120 simprl 809 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 𝐾 ∈ ℝ)
121120recnd 10106 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 𝐾 ∈ ℂ)
122 subdir 10502 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − (1 · ((𝐶𝑖) − (𝐴𝑖)))))
12347, 122mp3an2 1452 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − (1 · ((𝐶𝑖) − (𝐴𝑖)))))
124121, 107, 123syl2anc 694 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − (1 · ((𝐶𝑖) − (𝐴𝑖)))))
125107mulid2d 10096 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (1 · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐶𝑖) − (𝐴𝑖)))
126125oveq2d 6706 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − (1 · ((𝐶𝑖) − (𝐴𝑖)))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − ((𝐶𝑖) − (𝐴𝑖))))
127120, 106remulcld 10108 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
128127recnd 10106 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
129128, 100, 101subsub3d 10460 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − ((𝐶𝑖) − (𝐴𝑖))) = (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖)))
130124, 126, 1293eqtrd 2689 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖)))
131130oveq2d 6706 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐴𝑖) − (𝐶𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))))
132103, 119, 1313eqtr3rd 2694 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) = -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
133106resqcld 13075 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐶𝑖) − (𝐴𝑖))↑2) ∈ ℝ)
134 simprr 811 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 1 ≤ 𝐾)
135 subge0 10579 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝐾 − 1) ↔ 1 ≤ 𝐾))
13664, 135mpan2 707 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → (0 ≤ (𝐾 − 1) ↔ 1 ≤ 𝐾))
137136ad2antrl 764 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (0 ≤ (𝐾 − 1) ↔ 1 ≤ 𝐾))
138134, 137mpbird 247 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 0 ≤ (𝐾 − 1))
139106sqge0d 13076 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2))
140109, 133, 138, 139mulge0d 10642 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 0 ≤ ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
141109, 133remulcld 10108 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) ∈ ℝ)
142141le0neg2d 10638 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (0 ≤ ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) ↔ -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0))
143140, 142mpbid 222 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0)
144132, 143eqbrtrd 4707 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)
1457, 144sylan 487 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)
146145an32s 863 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)
147146ralrimiva 2995 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)
148147expr 642 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (1 ≤ 𝐾 → ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
14936, 99, 1483orim123d 1447 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → ((𝐾 ≤ 0 ∨ (0 ≤ 𝐾𝐾 ≤ 1) ∨ 1 ≤ 𝐾) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)))
1502, 149mpd 15 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3o 1053   = wceq 1523  wcel 2030  wral 2941   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cle 10113  cmin 10304  -cneg 10305  2c2 11108  ...cfz 12364  cexp 12900  𝔼cee 25813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901  df-ee 25816
This theorem is referenced by:  colinearalg  25835
  Copyright terms: Public domain W3C validator