![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliprv | Structured version Visualization version GIF version |
Description: The 𝑋 we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⊢ 𝐻 ∈ V |
coinflip.t | ⊢ 𝑇 ∈ V |
coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) |
coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
Ref | Expression |
---|---|
coinfliprv | ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.th | . . . . . 6 ⊢ 𝐻 ≠ 𝑇 | |
2 | coinflip.h | . . . . . . 7 ⊢ 𝐻 ∈ V | |
3 | coinflip.t | . . . . . . 7 ⊢ 𝑇 ∈ V | |
4 | 1ex 10236 | . . . . . . 7 ⊢ 1 ∈ V | |
5 | c0ex 10235 | . . . . . . 7 ⊢ 0 ∈ V | |
6 | 2, 3, 4, 5 | fpr 6563 | . . . . . 6 ⊢ (𝐻 ≠ 𝑇 → {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0} |
8 | coinflip.3 | . . . . . 6 ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} | |
9 | 8 | feq1i 6176 | . . . . 5 ⊢ (𝑋:{𝐻, 𝑇}⟶{1, 0} ↔ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
10 | 7, 9 | mpbir 221 | . . . 4 ⊢ 𝑋:{𝐻, 𝑇}⟶{1, 0} |
11 | coinflip.2 | . . . . . 6 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) | |
12 | 2, 3, 1, 11, 8 | coinflipuniv 30877 | . . . . 5 ⊢ ∪ dom 𝑃 = {𝐻, 𝑇} |
13 | 12 | feq2i 6177 | . . . 4 ⊢ (𝑋:∪ dom 𝑃⟶{1, 0} ↔ 𝑋:{𝐻, 𝑇}⟶{1, 0}) |
14 | 10, 13 | mpbir 221 | . . 3 ⊢ 𝑋:∪ dom 𝑃⟶{1, 0} |
15 | 1re 10240 | . . . . 5 ⊢ 1 ∈ ℝ | |
16 | 0re 10241 | . . . . 5 ⊢ 0 ∈ ℝ | |
17 | 15, 16 | pm3.2i 447 | . . . 4 ⊢ (1 ∈ ℝ ∧ 0 ∈ ℝ) |
18 | 4, 5 | prss 4484 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) ↔ {1, 0} ⊆ ℝ) |
19 | 17, 18 | mpbi 220 | . . 3 ⊢ {1, 0} ⊆ ℝ |
20 | fss 6196 | . . 3 ⊢ ((𝑋:∪ dom 𝑃⟶{1, 0} ∧ {1, 0} ⊆ ℝ) → 𝑋:∪ dom 𝑃⟶ℝ) | |
21 | 14, 19, 20 | mp2an 664 | . 2 ⊢ 𝑋:∪ dom 𝑃⟶ℝ |
22 | imassrn 5618 | . . . . 5 ⊢ (◡𝑋 “ 𝑦) ⊆ ran ◡𝑋 | |
23 | dfdm4 5454 | . . . . . 6 ⊢ dom 𝑋 = ran ◡𝑋 | |
24 | 10 | fdmi 6192 | . . . . . 6 ⊢ dom 𝑋 = {𝐻, 𝑇} |
25 | 23, 24 | eqtr3i 2794 | . . . . 5 ⊢ ran ◡𝑋 = {𝐻, 𝑇} |
26 | 22, 25 | sseqtri 3784 | . . . 4 ⊢ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} |
27 | 2, 3, 1, 11, 8 | coinflipspace 30876 | . . . . . . 7 ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} |
28 | 27 | eleq2i 2841 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ dom 𝑃 ↔ (◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇}) |
29 | prex 5037 | . . . . . . . . 9 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉} ∈ V | |
30 | 8, 29 | eqeltri 2845 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
31 | cnvexg 7258 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ◡𝑋 ∈ V) | |
32 | imaexg 7249 | . . . . . . . 8 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ 𝑦) ∈ V) | |
33 | 30, 31, 32 | mp2b 10 | . . . . . . 7 ⊢ (◡𝑋 “ 𝑦) ∈ V |
34 | 33 | elpw 4301 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇}) |
35 | 28, 34 | bitr2i 265 | . . . . 5 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
36 | 35 | biimpi 206 | . . . 4 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
37 | 26, 36 | mp1i 13 | . . 3 ⊢ (𝑦 ∈ 𝔅ℝ → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
38 | 37 | rgen 3070 | . 2 ⊢ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃 |
39 | 2, 3, 1, 11, 8 | coinflipprob 30875 | . . . . 5 ⊢ 𝑃 ∈ Prob |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝑃 ∈ Prob) |
41 | 40 | isrrvv 30839 | . . 3 ⊢ (𝐻 ∈ V → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
42 | 2, 41 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃)) |
43 | 21, 38, 42 | mpbir2an 682 | 1 ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 Vcvv 3349 ⊆ wss 3721 𝒫 cpw 4295 {cpr 4316 〈cop 4320 ∪ cuni 4572 ◡ccnv 5248 dom cdm 5249 ran crn 5250 ↾ cres 5251 “ cima 5252 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 0cc0 10137 1c1 10138 / cdiv 10885 2c2 11271 ♯chash 13320 ∘𝑓/𝑐cofc 30491 𝔅ℝcbrsiga 30578 Probcprb 30803 rRndVarcrrv 30836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-disj 4753 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-xnn0 11565 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-fac 13264 df-bc 13293 df-hash 13321 df-shft 14014 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-limsup 14409 df-clim 14426 df-rlim 14427 df-sum 14624 df-ef 15003 df-sin 15005 df-cos 15006 df-pi 15008 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-ordt 16368 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-ps 17407 df-tsr 17408 df-plusf 17448 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 df-subg 17798 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-cring 18757 df-subrg 18987 df-abv 19026 df-lmod 19074 df-scaf 19075 df-sra 19386 df-rgmod 19387 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lp 21160 df-perf 21161 df-cn 21251 df-cnp 21252 df-haus 21339 df-tx 21585 df-hmeo 21778 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-tmd 22095 df-tgp 22096 df-tsms 22149 df-trg 22182 df-xms 22344 df-ms 22345 df-tms 22346 df-nm 22606 df-ngp 22607 df-nrg 22609 df-nlm 22610 df-ii 22899 df-cncf 22900 df-limc 23849 df-dv 23850 df-log 24523 df-xdiv 29960 df-esum 30424 df-ofc 30492 df-siga 30505 df-sigagen 30536 df-brsiga 30579 df-meas 30593 df-mbfm 30647 df-prob 30804 df-rrv 30837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |