Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinflippvt Structured version   Visualization version   GIF version

Theorem coinflippvt 30847
Description: The probability of tails is one-half. (Contributed by Thierry Arnoux, 5-Feb-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinflippvt (𝑃‘{𝑇}) = (1 / 2)

Proof of Theorem coinflippvt
StepHypRef Expression
1 coinflip.h . . . . 5 𝐻 ∈ V
2 coinflip.t . . . . 5 𝑇 ∈ V
3 coinflip.th . . . . 5 𝐻𝑇
4 coinflip.2 . . . . 5 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)
5 coinflip.3 . . . . 5 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
61, 2, 3, 4, 5coinflipprob 30842 . . . 4 𝑃 ∈ Prob
71prid1 4433 . . . . . 6 𝐻 ∈ {𝐻, 𝑇}
8 snelpwi 5053 . . . . . 6 (𝐻 ∈ {𝐻, 𝑇} → {𝐻} ∈ 𝒫 {𝐻, 𝑇})
97, 8ax-mp 5 . . . . 5 {𝐻} ∈ 𝒫 {𝐻, 𝑇}
101, 2, 3, 4, 5coinflipspace 30843 . . . . 5 dom 𝑃 = 𝒫 {𝐻, 𝑇}
119, 10eleqtrri 2830 . . . 4 {𝐻} ∈ dom 𝑃
12 probdsb 30785 . . . 4 ((𝑃 ∈ Prob ∧ {𝐻} ∈ dom 𝑃) → (𝑃‘( dom 𝑃 ∖ {𝐻})) = (1 − (𝑃‘{𝐻})))
136, 11, 12mp2an 710 . . 3 (𝑃‘( dom 𝑃 ∖ {𝐻})) = (1 − (𝑃‘{𝐻}))
141, 2, 3, 4, 5coinflipuniv 30844 . . . . . 6 dom 𝑃 = {𝐻, 𝑇}
1514difeq1i 3859 . . . . 5 ( dom 𝑃 ∖ {𝐻}) = ({𝐻, 𝑇} ∖ {𝐻})
16 difprsn1 4467 . . . . . 6 (𝐻𝑇 → ({𝐻, 𝑇} ∖ {𝐻}) = {𝑇})
173, 16ax-mp 5 . . . . 5 ({𝐻, 𝑇} ∖ {𝐻}) = {𝑇}
1815, 17eqtri 2774 . . . 4 ( dom 𝑃 ∖ {𝐻}) = {𝑇}
1918fveq2i 6347 . . 3 (𝑃‘( dom 𝑃 ∖ {𝐻})) = (𝑃‘{𝑇})
201, 2, 3, 4, 5coinflippv 30846 . . . 4 (𝑃‘{𝐻}) = (1 / 2)
2120oveq2i 6816 . . 3 (1 − (𝑃‘{𝐻})) = (1 − (1 / 2))
2213, 19, 213eqtr3i 2782 . 2 (𝑃‘{𝑇}) = (1 − (1 / 2))
23 1mhlfehlf 11435 . 2 (1 − (1 / 2)) = (1 / 2)
2422, 23eqtri 2774 1 (𝑃‘{𝑇}) = (1 / 2)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1624  wcel 2131  wne 2924  Vcvv 3332  cdif 3704  𝒫 cpw 4294  {csn 4313  {cpr 4315  cop 4319   cuni 4580  dom cdm 5258  cres 5260  cfv 6041  (class class class)co 6805  0cc0 10120  1c1 10121  cmin 10450   / cdiv 10868  2c2 11254  chash 13303  𝑓/𝑐cofc 30458  Probcprb 30770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-ac2 9469  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-disj 4765  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-acn 8950  df-ac 9121  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-xnn0 11548  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ioc 12365  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-shft 13998  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-limsup 14393  df-clim 14410  df-rlim 14411  df-sum 14608  df-ef 14989  df-sin 14991  df-cos 14992  df-pi 14994  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-ordt 16355  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-ps 17393  df-tsr 17394  df-plusf 17434  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-subg 17784  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-cring 18742  df-subrg 18972  df-abv 19011  df-lmod 19059  df-scaf 19060  df-sra 19366  df-rgmod 19367  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-lp 21134  df-perf 21135  df-cn 21225  df-cnp 21226  df-haus 21313  df-tx 21559  df-hmeo 21752  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-tmd 22069  df-tgp 22070  df-tsms 22123  df-trg 22156  df-xms 22318  df-ms 22319  df-tms 22320  df-nm 22580  df-ngp 22581  df-nrg 22583  df-nlm 22584  df-ii 22873  df-cncf 22874  df-limc 23821  df-dv 23822  df-log 24494  df-xdiv 29927  df-esum 30391  df-ofc 30459  df-siga 30472  df-meas 30560  df-prob 30771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator